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o ! 1
I. .IN'I‘R?DUCL‘I(IJ
Prior to the grant period 5/15/82 - 5/14/83, the efforts of our group
. concentrated on charge—exchange schemes to obtain lasing in the X-ray region.
During the period 5/15/82 - ?/14/83, the efforts of the group were directed
towards alternative sc}}e:mes.” such as the free-electron laser, to obtain X-ray
lasing. Possible uses of X-ray lasers in novel areas, such as in nuclear
phenomena, were also investigated, which led to rigorous analyses of some
earlier work concerning nuclear beta decay, as well as careful oconsiderations of
intense field behavior of quantum systems.

The following report consists of two parts. The first part summarizes the
initial work concerning the possibility of scaling the free-electron laser to
X-ray wavelengths. The second part summarizes the work dealing with the
possible uses of X-ray lasers in nuclear phenomena, and with correct
descriptions of quantum systems in intense fields. The papers which detail
these results either in published or in preprint form, are reproduced as
appendices.

II. SCALING OF FREE-ELECTRON LASER TO X-RAY WAVELENGTHS

A difficulty in extending the operation of lasers based on atomic
transitions down to X-ray wavelengths is the short lifetime of excited states,
due to radiative and Auger transitions. This difficulty is not present in the
case of free-electron lasers (FEL), since the energy source for the lasing is

stored stably (for hours, in the case of storage rings) in the form of electron

kinetic energy. ioreover, the FEL is intrinsically a swept-gain device, ) ]

normally operating with overlapping picosecond pulses of electrons and laser

radiation. Thus, a gain length of many meters is possible in a mostly empty

i

:3- cavity, since the gain pulse (electrons) moves at nearly the same speed as the
Cal

E:i laser pulse. The FEL wavelength is continuously tunable by changing the

-

f,
.

electron energy, and so can be matched to available Bragg crystal resonators.
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' 'mo possible ways to achieve short-wavelength oggtatim of the FEL have
been considered. One is to use high-energy (Gev) electrons in conjunction with
a long conventional wiggler (or a GW nicrowave field in a waveguide). The
second is to use low-mergy".(lo MeV) electrons passing through a
ocounter-propagating h}gh-po'wer infrared laser pulse. The first regime can sive
very large gain (oi:eration without a resonator is a possibility), but requires a
wiggler tens to hundreds of meters ion length, unless a good quality Bragg
resonator can be developed. Electron beam quality is the most important
limitation. Storage-ring operation may be feasible down to about 60 A. Shorter
wavelengths (down to a few A) are possible in principle using a linear
accelerator, but suitable accelerators have not been developed.

The second regime using a high-power laser pulse can give moderate (40%)
gain. In this regime the quantum recoil can be as large or larger than the
homogeneous bandwidth, so that quantum effects are definitely important. The
quantum effects, though physically interesting, are in general adverse, reducing
the gain and limiting the saturation power to about one photon per electron.

The correct gain can be calculated using semiclassical theory (quantizing the
electrons, but not the field). Another important feature of this type of FEL is
the slowing of the electrons as they pass through the high-intensity beam waist
of the counterpropagating Gaussian beam. This slowing is due to transfer of
electron kinetic energy into transverse motion (mass-shift effect) and spreads
the gain over a bandwidth dependent on the pump laser power (but not on the size
of the beam waist). In general, electrons in an appropriate energy range are
resonant at one point entering and at one point leaving the focal region, and
interference between radiation emitted at these two points gives a rapidly
oscillating homogeneous spectral lineshape. The highest peak of the lineshape
curve is at the low-frequency end of the curve, and corresponds to electrons

which are resonant at the beam waist. The frequency of this peak depends on the

.......................................
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?:g power of the pump laser. A difficulty with this regime is to devise a cavity
f,l{; for injectiné and recirculating the terawatt pump p\-n.se and to keep the
f | . electrons resonant for many passes if the pump pulse is decaying.
E?é | The work sumarized above is described in the paper by J. Gea-Banachloche,
jjj G. T. Moore and M. O. §cu11;, “Prospects for an X-Ray Free-Electron Laser", in i
o Free-Electron Generators of Coherent Radiation, edited by C. A. Brauy, S. F. :
S; Jacobs and M. O. Scully, Proc. SPIE 453, 393 (1984). It is reproduced in |
\:’- Appendix I.
g III. NUCLEAR SPECTROSCOPY WITH X-RAY LASERS
::;:: One can reasonably expect that X-ray lasers when available, will have a
\3 strong impact on nuclear spectroscopy, similar to the impact that optical lasers
iy have had on atomic spectréscopy. It is particularly interesting to anticipate
{"f. " the possibility of modulating nuclear beta decay or orbital electron capture
# : rates by means of an X-ray laser. This possibility was analyzed for a simpl:
‘ case of a parent nucleus (Z,N) decaying into a daughter nucleus (2 + 1, N + 1),
,,- where the parent nucleus has just two states, a (lower) and b (upper), and the
3:': daughter nucleus has just one state c¢. Both a and b are assumed to be unstable
' ' with respect to weak decays. The X-ray laser frequency is assumed to be tunable
f:‘-.- to the level separations of a and b. The situations similar to the highly
:‘:'3 forbidden decay of 1::1 to a low lying excited state of 1;3Xe. The physical
\ picture is exactly analogous to Raman scattering. The results of the
, calculation show that the modulation of the decay rate is extremely sensitive to
-\ the tuning of the laser frequency to the a + b transition frequency, which has
m natural quantum limits arising from the spontanecus decay of the states, as well
.(E:‘ as from internal conversion processes. 1f one can achieve tuning on the order
F\. of Aw/w ~ 10 13, powers on the order of 10!“ W/cm® are needed in order to see
:'22 observable effects in the decay of 12:1. This calculation is described in the
53 , paper by W. Becker, R. R. Schlicher, M. O. Scully, M. S. Zubairy, and M.
KA
1@:
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:E'é - CERT Y [l by M Vet L% O = T A v L s
v ] .
4 } 4
, Go'ldhaper. "mclear Spectroscopy with X-ray Lasers", Phys. Lett.1318(1983) 16,
;',:‘:‘ which is reproduced in Appendix II.
v One interesting result concerns seat:,tering processer or decay of charged or
‘,:EZ ‘ neutral pointlike particles in a laser field idealized by a plane wave of
;: arbitrary polarizatia?.’. 'n; wave functions of the charged particles are then
N Volkov solutions. In the paper by W. Becker, G. T.Moore, R. R. Schlicher and M.
J O. Scully, "A note on total cross sections and decay rates in the presence of a

*.‘ laser field", Phys. Lett. 94A (1983) 131, which is reproduced in Appendix III,

: it is shown that in the quasiclassical limit (h + 0), the differential cross
::Ei section or decay rate can be represented as an integral with respect to time
\ over an instantaneous cross section of decay rate which depends on the value of
‘ the laser field at a given time. Since this instantaneous rate is, in
::i principle, a measurable quantity, it must depend on the canonical momentum '{)i of
:ﬁ the i*" particle and on the laser field A(t) only via the mechanical momentum
V‘ '{i(t) = i;i - ei'f\(t). If the differential rate is integrated over the final
:'.: momenta in order to cbtain the total cross section of the total decay rate, the
EJ dependence of the final rate on the laser field is completely eliminated by

-~ changing the integration variable from '{)i to '§i - eiK(t). Consequently, the

total decay rate of a neutral particle is unaffected by a laser field, and a
charged particle, if stable in vacuum, remains stable in a laser field. The

i quasiclassical approximation breaks down if the strength of the external field
\ becomes comparable with the critical field strength I::crit=m2c3/dwlo16 Volt/cm,

which is out of reach of present lasers or those anticipated in the near future.
\ “ The preceding considerations can be extended to nucleons bound in a
::;52} self-consistent potential when the nucleon-laser field interaction is
j negligible. Given the energy of a typical laser quantum of 1 eV and a typical
.;; nuclear level difference of 1 MeV, this is an excellent approximation. In this
:; case it can be shown again that, in the quasiclassical limit, total decay rates

2o
o




are unaffected by laser fields which are weaker than the critical field. Recent

claims that forbidden nuclear beta decay can be drastically enhanced by an
intense radio frequency field are contested. This work is described in Apcendix
IV, vwhich is a preprint engitled “A no~-go theorem concerning the enhancement of
nuclear decays by inte;xse ’radiation fields", by W. Becker, R. R. Schlicher and
M. O. Scully (submitted for publicatior in Phys. Lett.).

At the 1983 NATO Advanced Study Institute in Madrid, Spain, M. O. Scully
gave seminars on the subject of allowed nuclear beta decay in intense laser
fields. 'The notes for these lectures were prepared by R. R. Schlicher, W.
Becker and M. O. Scully and are reproduced in Appendix IV. The notes cover
topics such as total decay rates and differential electron energy distributions
of nuclear beta decay in the presence of a laser field. The emphasis is on the
Classical versus quantum mechanical description, questions of gauge invariance,
and the fact that the classical description is sufficient for a much wider range

of parameters than one might initially assume.
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Prospects for an X-Ray Free-Electron Laser
Julio Gea-Banacloche, Gerald T. Moore and Marlan 0. Scully

Institute for Modern Optics, Department of Physics and Astronomy
University of New Mexico, Albuquerque, New Mexico 87131

Abstract

We present an overview of the regimes in which operation of an x-ray free-electron laser
(FEL) may be feasible, including discussion of static and electromagnetic wigglers, quantum
recoil, high-gain operation, mass-shift broadening, and electron beam quality.

Introduction

The free-electron laser is a swept-gain laser which offers unique possibilities for
scaling to short-wavelength operation. Atomic charge-exchange swept-gain devices!’2 which
have been proposed for operation at x-ray wavelengths are limited by rapid spontaneous decay
of the upper lasing level. By contrast, energy input to the FEL is in the stable form of
electron kinetic energy, and the electrons themselves (not just the gain) propagate at
nearly the speed of light. No atomic nuclei or bound electrons are present to complicate
the physics (except in the resonator materials).

We shall consider here possible regimes for an x-ray FEL lasing at the fundamental
frequency wg ® 2Cy 2k, oOrF wg ® AcySZki, where y, is the longitudinal Lorentz factor of the
electron beam and ﬁq ?ki) is the wave vector of the static (electromagnetic) wiggler.
Generation of higher harmonics3’“ of wg is another important mechanism for producing short
wavelengths, but will not be treated in this paper.

Because available resonators for x-rays are of poor quality, it is necessary to have
large gain per pass to obtain lasing. 1If the gain is sufficiently large, one can dispense
with the resonator altogether and lase by amplified spontaneous emission (ASE). It is not
known how much gain is required for an FEL to lase by ASE. This mode of operation would
have advantages, since the repetition rate of electron pulses (and wiggler pulses in the
case of a counterpropagating electromagnetic wiggler field) could be arbitrarily low. There
would also be no problem of resonator alignment. The coherence time would be limited to the
slippage time L/ZYszc, where L is the wiggler length. 1In other words, the coherence in
terms of x-ray periods could not exceed the number of wiggler periods. Probably one could
not do much better than this using a low-Q resonator.

We shall consider two types of wiggler, the uniform wiggler and the Gaussian beam. The
uniform wiggler could be a conventional permanent-magnet or bifilar-helical type. It could
also be a counterpropagating electromagnetic wave contained in a wave guide. The latter
might be less expensive, particularly if one needs a very long wiggler. In either case the
wavelength ) _or Ay e 2). is on the order of centimeters. To obtain x-rays from such a
wiggler, the electron engrgy must be in the GeV range.

The Gaussian-beam wiggler uses a counterpropagating focused Gaussian beam from a
high-power infrared laser as the wiggler field. Because A is small, the electron energy
need only be on the order of tens of Mev. The interaction length is limited both by the
Rayleigh range 2, and the infrared pulse length. Moreover, slowing of the electrons in the
vicinity of the beam waist is the dominant source of homogeneous line broadening for a
powerful (terawatt) wiggler field. Quantum recoil of the electrons is also typically
important for this type of FEL.

tow=-Gain Uniform Wiggler

Let us now consider the uniform wiggler in detail. The quantity of most interest is the
small-signal gain. We first evaluate the gain per pass G assuming G << 1. Then we
generalize to the large-gain regime G >> 1. For the sake of definiteness, we assume a
static wiggler. Wwe neglect pulse effects, assume the x-ray laser beam to be monochromat:ic,
and account for the detuning of electron energies E from resonance by the usual detuning
parameter ., defined by

E = Mczvs(l . u/2kq) . (1)

—‘ . . .
Here M = m3® is the electron mass multiplied by a mass-shift correction given by
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T a1« (eB/mckq)2 . (2

where B is the RMS magnetic field. 1In practice we are interested in cases where : is at
most a few times unity.

1f we postpone for now the question of emittance, there are three detuning widths
governing the expression for the gain. First, there is the homogeneous transit-time
broadening with bandwidth 2r/L. Second, there is the inhomogeneous broadening U
characterizing the width of the normalized electron energy distribution f(.). Third, there
is the quantum recoil 2q undergone by electrons when they emit an x-ray photon.

The scaling of U is different for linear and circular accelerators (or storage rings).
For linear accelerators the spread §E is determined mainly in the initial part of the
accelerator., With care one can accelerate the electrons to high energy without increasing
SE. From Eq. (1) we see that

Ll T (am)2* SE A %2 " (3)
Mczys Mc? s

The value of SE _depends on the particular accelerator, but probably the minimum value one
could obtain is

8E = el/4regc = mc2(1/17,000 A) , . 4

where I is the electron current. This limit comes from the Coulomb repulsion of the
electrons, The energy spread in the Stanford superconducting LINAC is about 100 times
larger.

In a storage ring the dominant energy spread® is due to noise associated with synchrotron
radiation and gets larger at higher energies. One has approximately

6E = (h/:mco)k(szlmcz) ’ !

where o is the bending radius of the ring. Combining Eqs. (5) and (1) yields

U = 2n(hB/meo)® A 7" Aq-k_. (6)

1.
The fact that Eq. (6) scales as xs°’ suggests that a storage-ring x-ray FEL is impracticable
if Ay is too small, since the maximum L for homogeneously brcocadened operation will scale as
xsg. Our estimates indicate a minimum A of about 60 A. The storage ring seems an excel-
lent option for i of 100 A or greater.”” With a linear accelerator it may be possible to
scale ) down to 5 A or less.

The quantum recoil hws when expressed 1n detuning units becomes
1 .3
2q = (82 zah/nc)xs” Aq 2, (7

In the small-gain, small-signal regime the gain may be written as G = C!, where

PRI 1§ LL AN B ' (8)
- .
2%aMicregl q
r -<J-{d.[f( v q) - fuw - DA ]? (9
zq) H » I}

Y L LA (1&L¢Jﬁ£]z
Jata)]s = IJ Jz e v/l )

0

(10)

We have used the¢ ~~=nle upshift condition to eliminate explicit reference to +5 in Eq. (B).

I is the current w)t 1n che laser mode area . The coefficient n is one for a helical
wiggler and a well "nown 3 difference of Bessel functions for a linear wiggler. Equation (9)
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expresses T as the difference between the f&iwazd and reverse quantum processes. This
difference is replaced by a derivative with respect to u in classical treatments of the FEL.
This replacement is sometimes, but not always, justified for the x-ray regime.

We may distinguish six regimes depending on the relative sizes of the homogeneous,
inhomogeneous, and quantum widths, as shown in Table 1.

As an example, let us consider a helical wiggler with the parameters of the Staniord
wiggler, except that 1t is longer, and use this wiggler to generate 5 A radiation. The
system parameters we use are shown in Table 2,

Quantity Symbol Value

29 < U< 27/L, T «1L3 Wwiggler wavelength Yq 3.2 cm

29 < 23/L < U, [ « L/U? Magnetic field B .24 T

U< 29 < 2=/L, [ « L3 Mass shift . Iy 1.512

27/L < 2q < U, T « L/U% Laser wavelength A 5 A

U < 27/L < 2q, I « L/q Electron energy E® 3.554 Gev

27+/L < UK 2q, T « L/qU Current 1 10 A .
Electron beam power EI/e 3.564 x 10'°w
Laser mode area A .16 mm-

Table 1

Table 2

With these parameters we calculate a homogeneously broadened gain of unity at L = 81 =m. If
we take the inhomogeneous broadening to be given by Egs. (3) and (4), and we use Eq. (7) for
the quantum recoil, we calculate 27/U0 = 1.9 x 10°m and r/q = 2.3 x 10°m, These correspond
to the wiggler lengths at which the homogeneous broadening would equal the inhomogeneous
broadening or the quantum recoil respectively. We conclude that 3E could be more than three
orders of magnitude larger than the value given by Eq. (4) before inhomogeneous broadening
begins to affect the gain.

So far we have merely assumed that \ = 3.2 cm without justifying whether this is close
to an optimal value. We can get a moze1globa1 picture of the situation on a log-log plot of
L versus Aq, as shown in Fig. 1. Here the point of unit gain at i; = 3.2 cm, L = 81 m is

marked by an X. The two lines with slope 3/2 indicate the transitions where -/L = g and
27/L = U. If we hold B and © constant, and neglect minor effects due to mass shift, we can
generate a curve along wnhich G = 1 by using Eq. (8) and Table 1. This gives the three-
segment solid curve in Fig. 1. Alternatively, if we assume that the mode area T is governed
by diffraction of the x-rays, then L =« /L and we generate the dotted curve in Fig. 1. We
can generate curves along which the gain has other values by parallel transport of these
curves along the transition lines. These curves of constant gain are invalid if A  becomes
too large. This is because the mass-shift corrections then become substantial and because
the wiggle amplitude may exceed the assumed mode size.

We can infer from Fig. 1 that it is best to choose conditions close to the transition
lines, since L is minimized there. The choice ‘3 = 3.2 cm gives us some latitude if JE is
larger or if we want to increase L further to get more gain. We also see that it is very
disadvantageous to decrease ., to operate in the inhomogeneously broadened regime. The main
point in trying to use a terawatt infrared laser as a wiggler 1s simply that the magnetic
field one can generate is much larger than in a conventional wiggler.

High-Gain Uniform Wiggler

The classical cold-beam small-signal equations for the FEL have been published
previously.? The extansion of these equations to include inhomogeneous broadening is
straightforward. The extension to include quantum recoil is too lengthy to derive here, but
can be done by analyzing the couplaed Maxwell and Xlein-Gordon equations. The result,
itself, is very simple. In the cold-beam limit the equations take the form

elBY = -iugz
dE_/dz = 1 ———d— ¢ (. (1h
dregMe~y *
5
dK, (12)

— 2 K!




Figure 1. Curves of constant gain on a L(m) .

log-log plot of wiggler length L versus
wiggler wavelength A_ provide a convenient
global picture of regions where operation of |o°-
a short-wavelength FEL may be possible. In

this figure we fix the laser wavelength, the 6
wiggler magnetic field, and the current at 10° 4
the values given in Table 2. The point

marked X corresponds to the unit-gain lOQ'J = 2q
example discussed in the text. The energy
spread is held constant at 300evV, ’ INHOMOGE -
independent of the electron energy. The 1024 Neous
quantum recoil in this example exceeds the
inhomogeneous broadening, and the two 1 4
parallel lines of slope 3/2 indicate the
transitions where these respective widths -2
equal the homogeneous broadening. Using Eq. 107 <
(8) and Table 1, and assuming the laser mode
area ) is constant, we construct the '0-4-
three-segment solid curve along which G = 1,
The slopes of the three segments (from right
to left) are 1/6, -1/2 and -5/2. By 10°64
parallel transport of this curve along the
transition lines, we can generate curves lO'e-
along which G has other values. 1If G is
small, then Gz) _“ at the transitions. The -10
value of G on a'given curve scales as B2I/:I, 10 T T Y T Y
We see that it is optimal (in terms of . - - - -
minimizing L) to operate near the transition 1070 108 10€10°% 1072 | 102 Xq(m)
lines. Also, it is disadvantageous to

choose A _ too small, unless one can

compensa@e by increasing the wiggler field. The dotted curve is generated by taking

2 =« AgL, as is appropriate if the mode area is limited by diffraction of the x-ray oeam. In
this case the segments of the curves of cons§7nt gain have slopes 1/4, -1 and -», and zae
gain along the transition lines scales as g4’ 2.

HOMOGENEOUS

dK 2 iugz
— « 2Bn E_ - q2K . (13)
dz M2c3y 2 s 2

S

Here E., K2, and K; are the laser field, the density-bunching amplitude, and the
velocity-bunching amplitude. The last term in Eq. (13) is the guantum correction, and -: is
the velocity detuning from resonance. The quantum correction arises from an interfarence
between probability amplitudes with and without the photon emission. 1In the small-ga:n
limit Egs. (11)-(13) can be used to derive (8)-(10) in the case f(u) = 3(u - -3). However,
in general the solution of Egs. (1l1)-(13) consists of three exponential mudes having <he
spatial dependence exp (3z), where 3§ obeys the cubic dispersion relation

(14

n

BL[(8 + iug + U)Z + g%) = iC .

In Eq. (14) we have generalized to the case where f(u) is not a é~function, but is a
Lorentzian of width U (HWHM) centered at = = .y, At most one of the roots of Egq. (14) nas a
positive real part, and the corresponding mode will dominate near the end of a sufficiently
long wiggler. At the entrance of the wiggler the three modes contribute about equally in
order to satisfy the initial conditions K,(0) = K,(0) = 0. Figure 2 shows the growth rate

2 Re(8) for g = 0, U = 0 as a function of ;. We see that maximum gain 1s obtained on
resonance, where

6= g exp(3't L (s

For the parameters of Table 2 we calculate a gain per pass of 1000 if L = 276 m. This might
be enough to lase without a resonator. A conventional wiggler of this length would oe very
expensive, but one might be able to instead use a microwave confined by a wavequ:de.  The
microwave power required would be about 1 GW, and the minimum microwave pulse lenain needed
would be 2L = 552 m, so that the microwave pulse energy would be about 1.8 k.. Sucn
microwave powers are obtainable and can be propagated 1n a single wave-guide mode.

Microwave pulse lengths obtained so far at this power are a bit short of what we would like.
Note that the slippage time L/2v,°c is only 1.44 x 10 '‘sec.
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Figure 2. The gain coefficient 2 Re(3) Figure 3. The gain coefficient 2 Re(3)
for the exponentially growing mode is is shown as a function of inhomogeneous
shown as a function of velocity detuning broadening U for the optimal detuning
ugr, Neglecting quantum recoil and wo = U/3?¢, Quantum recoil is neglected.

inhomogeneous broadening.

The effect of a Lorentzian inhomogeneous broadening of width U (again neglecting q) is to
shift the optimal detuning to ug = 3 °U and to reduce the gain, as shown in Fig. 3.

In Fig. 4 we show 2 Re(8) for the case where the inhomogeneous broadening U is set equal
to zero, but the guantum recoil q is taken into account. If C { gq°, then the gain is peaked
near ., = q. If C becomes larger than g3, then 2 Re(:) approaches the classical result
given in Fig. 2, but continues to have a sharp cut-off on the negative, as well as positive,
end of the detuning range. The quantum recoil reduces the maximum of 2 Re(£) below its
classical value. For the parameters of Table 2 this is a very slight effect, since

c/qd = 2,7 x 105,
. 2Re(B)
c|/3

Figure 4. The gain exponent (in 1.0 1
units of C¢'%) vs. the detuning
(in units of gq) for several
cases in the quantum-mechanical
regime. Solid Line: (/q? = 1.
Dashed line: C/q3 =_.l.
Dash-dot line: C/q’- .01,

u/q

We expect the FEL to saturate when the density bunching amplitude K,(2) becomes of the order
of unity. From this condition we can derive the saturation power

(186)

Psat *

N3
leB'\ 2% ( c ]l/,
1672

For the above numerical example we calculate Psat = 1.7 MW,

Gaussian-Beam Wiqggler

Infrared lasers such as CO» or lNd-glass can generate very large electromaanetic fields,
which suggests that we consider high-power pulses from sucn lasers as wiggler tields for an
x-ray FEL. ‘* Since \q is short, one needs relatively low electron energies (tens of Mev).
The interaction length is limited to half the pulse length of the infrared (pump) laser,
since the electrons and pump field are counterpropagating, each at nearly the speed ot
lignt., Moreover, the interaction length is limited to a value on the order of the Rayleigh
range 2, by diffractive spreading of the pump field. In the present analysis we take the
pulse length infinite for simplicity and only take into account the diffractive spreading.
Then the on-axis pump field is of the form

At e At it A A i g A




1 (17)

,\q(:'t) = I—T_I.T:R :\i exp[-iui(t + z/c)) .

The wiggler field is therefore tapered. The electrons will be slowed up in the vicinity of
the focus, wnere more of their energy gets transferred into transverse oscillation. This
results in greater homgogeneous broadening than for a uniform wiggler. Electrons within the
homogeneous bandwidth will in general be resonant (move at the same speed as the
ponderomotive potential) only at one point entering and one point leaving the focal region.
The electron slowing is a consequence of the variable mass shift. Even though I - 1 will
normally be very small for the Gaussian-beam wiggler, the cumulative effect over the many
wiggler wavelengths within the interaction region can be large. It turns out that the size
of the effect is characterized by a parameter ¢ depending only on the power P; in the

pump field,

€ = (ZeZ/ﬂeomzcs)Pi . (18)

For a terawatt beam this gives ¢ = 913. Let us specify that the energy-detuning i be zero
for electrons which at 2 = := travel at the speed c(ky - ki) /(kg + k;) of the ponderomotive
potential. Then the homogenecus bandwidth for large € is approximately 0 < u2p € ¢. The
function A(u) in Eq. (10) is replaced by

Au) = I dz T—T-%?7?; exp[-iuz + ie arctan(z/Ip)] . (19)

-0
Also, the constant C in Eq. (8) can be written in terms of ¢ as

C a el ¢ (20)
3 3
2c colmy, ZR

1
The two points of stationary phase in Eq. (19) lie at z = : 2Zp(¢/uZp - 1)%, and ) is
approximately a sum of contributions from these two points. The interference of these two
contributions makes |1(u)|2 a rapidly oscillating function of , if ¢ is large. A grapn of
this function for ¢ = 92 1s shown in Fig. 5. The width of the large peak on the right side
is approximately Ze*VzQ. It is possible to express :(u) exactly in terms of Whittaker
functions.!! An approximate expression in terms of Airy functions which is valid near
us= c/zR (that is, around the main peak on the right side) is

Figure 5. The mass-shift broadened
line-shape r'(u) as a function of
energy detuning. THe main peak

on the right (centered at about

= e/zR) corresponds to a

detuning such that particles are
resonant near the focus of the
Gaussian beam.

Jaqu) |2 = 4e=

-y’ (v2p - <] (21)
273 M

[
where Ai(x) is the Airy function,
As . becomes less than :/Z,, the function |'(u)|‘ becomes more and more rapidly
oscillating. In cases where the inhomogeneous broadening is large compared to the period of

these oscillations, we can average over the oscillations to obtain (in the stationary-phase
approximation)
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Contributions to |A(u)]2 near y = 0 come from z points far away from the beam waist. In
practice such contributions are excluded by the finite pump pulse length.

Clearly there are a ﬁumb,: of possible operating regimes, depending on the relative sizes
of U and 2q, compared to 2¢’%2Zp and ¢/2Zg. The most favorable case is one in which all the
electron energies are contained within the main peak on the right of the gain curve (see
Fig. 5), and where the Compton recoil is of the same order as the width of that peak, so
that the absorption process is well separated from the emission process (with no electrons
contributing to the former). 1In other words, we require

%
U<%=2q. (23)

where for an electromagnetic pump pulse of wavelength Xi, 2q is given by

32«20 % . % N
4t S M M (24

(This corresponds to Eq. (7) with xi = 2xq). Under these conditions, using Eq. (21), we
have

r wZ, - € '
C 2 _R .2 R
G = 4n AL |———— (25)
ﬁ C% [ C% J
and
el 2,2z,
G x 0.29
max * T 70 orh ' (26)

where we used Eq. (20) and the fact that the maximum value of Ai? (x) is 0.29.

Once the wavelength of the pump is chosen, the value of the ratio c"ﬁ'/zR is limited byl
the condition (23). Recall that ¢ is proportional to the power in the pump pulse and Zp is
proportional to the pulse length. Increasing 2, helps to increase the gain, according to
Eq. (26), but it also reduces the width of the gain peak, and eventually one ends up in the
inhomogeneously broadened regime.

A serious limitation to the minimum achievable energy spread comes from Eq. (4), which
gives the difference in the kinetic energy of the electrons at the edge and the electrons on
the axis of an unneutralized beam. The inhomogenheous width resulting from this effect is
given by

.
U= 16r2 % 2 A (1717,000 a) . (27

i

Note that I here is not necessarily the total current, but only the current through the
laser mode area I. It seems as if one could make this very small by making the laser mode
area very small (hence decreasing I while keeping I/[ constant). In reality one is limited
here too by the fact that the electrons have some transverse velocity and if T is very
small, they might drift out of the interaction volume and contribute little to the gain. A
measure of this transverse velocity spread is provided by the emittance of the beam. .

Without dwelling on the details, we present in Table 3 some optimal values for two
possible cases: one in which the pump pulse is a 10!'¢ W pulse from a Nd:YAG laser at 1.1
vm, and one in which it is a 10!! W pulse from a CO; laser at 10.6 um. [n both cases we
assume operation at A, » 5.7 A. We have chosen this wavelength because of the possibility
at this wavelength of building a rcasonably good resonator using Bragg diffraction from Ge
crystals,!? wWe take the length of the pump pulse to be roughly equal to the Rayleigh length
to obtain efficient coupling.

The CO2-laser-pumped case appears to be more favorable, except that the relative energy
spread is rather small. The absolute enerqgy spread, however, is the same {n both cases, and
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Pump Parameters

Pump wavelength 4j 1.l um 10.6 um
Pump power Pj 1012 watts 10!! watts

(c = 913), {(c = 91.3)
Rayleigh length 2, 4.4 mm 6 cm
Total pulse energy Pji(2Zr/c) 30 Joules 40 Joules

Electron Beam Parameters
Electron beam énergy E 11 Mev 34 leVv
Normalized emittance 5.2 x 10°¢ m rad same
Peak current density 1I/I 10 MA/em2 1.6 MA/cm 2
Peak current (total) 9 kA 4.7 kA
Energy spread éE/E 2 x 107% 6 x 1075
Electron beam cross section 9 mm2 29 mm?
Laser mode area 7%x10719m2 4.4x1079m2
Gain 0.4 0.4
Table 3

equals 2.4 keV (equal to the Compton recoil at the wavelength considered). The normalized
emittance has been chosen egqual to that of the Stanford FEL experiment. A smaller emittance
would help lower the requirements on the total current. Note in this respect that the total
peak current across the laser mode area is in both cases only about 70 A, so that many
electrons are being “wasted"., As mentioned before, this is because one needs to keep the
electron beam area large so that it won't spread too fast, given the emittance we have
assumed. The need for high current densities, on the other hand, seems unavoidable, as may

be seen from Eg. (26).

The situation is, as one might expect, more favorable for longer A_. As a final example,
we give some figures for operation at 100 A, using again a terawatt pulse from a Nd-YAG
laser. 1In this case, we increase 2, over the value given in the previous example to satisfy
Eq. (23). With the value 2, = 1.74 cm (corresponding to a total pump pulse energy of 120 J)
one gets a gain of unity (150\) for a current density of 21 kA/cm? and a peak current of 190
A. The electron energy is only 2.6 MeV in this example, and the maximum allowable energy
spread to stay in the homogeneously broadened regime is §E/E = 5 x 1075 (4E = 0.1 keV).

Discussion

In this paper we have had space only to describe the basic physics of various regimes for
possible operation of an x-ray FEL. We have seen that substantial gain can be achieved.
However, clearly much work remains in areas such as accelerator design, electron beam
transport, x-ray resonators, and optics for injection and recirculation of high-power
electromagnetic wiggler pulsés. The subject is relatively undeveloped, and additional
regimes of operation and mechanisms for gain enhancement may remain to be discovered.

We conclude by assessing several items of concern to the designer of an x-ray FEL.
Diffractive spreading of the x-ray beam is a minor effect, although appreciable for a very
long system., The value of I which we used for the long-wiggler example is consistent with
the effect of diffractive spreading. For the Gaussian-beam wiggler one can have a very
small . However, if the electron beam area is much larger than g, it could be hard
experimentally to observe the lasing against a strong background of incoherent emission from
all the electrons. Because of the high loss of x-ray resonators, one can expect the laser
output itself to be rather incoherent.

Absolute tolerances on the long conventional (or microwave) wiggler are about the same as
in present-day conventional wigglers., For the Gaussian-beam wiggler the pump beam must be
coherent over the interaction length., Effects due to the finite pulse length of the wiggler
pulse may also be important, and remain to be calculated. If one operates with ¢ >> 1, then
either the power in the pump pulse must be kept nearly the same on each pass or the electron
energy must vary from pass to pass in order to maintain the gain at constant x-ray
wavelength.

Transverse variations in the wiggler field are a serious concern for all the regimes we
have considered, since they can lead to de-phasing of the electrons with respect to the
ponderomotive potential. We estimate that such effects can be adequately controlled by
keeping the e-beam area small enough that the electrons essentially see the on-axis wiggler
field.

Emittance can also reduce the gain. We estimate that a normalized emittance equal to or
less than that of the Stanford superconducting accelerator is sufficient to prevent serious
gain depletion.

Bl 3

-




One reason why it is interesting to study the physics of the x-ray FEL is that features
of the problem which are of minor importance at long wavelengths here become dominant. In
particular, quantum and other fluctuations, as well as the development of coherence in three

~ -dimensions through ASE, are dominant processes. Future theoretical work, together with
experiments at short wavelengths, should lead to a better understanding of this largely
uncharted territory.
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NUCLEAR SPECTROSCOPY WITH X-RAY LASERS

W. BECKER, R.R. SCHLICHER, M.O. SCULLY, M.S. ZUBAIRY
Institute for Modern Optics '. Department of Physics and Astronomy, University of New Mexico,
Albuquerque. NM 87131. USA

and Max-Planck-Institut fir Quantenoptik. D-8046 Garching, West Germany

and

M. GOLDHABER
Brookhaven National Laboratory %, Upton, NY 11973, USA

Received 1 June 1983

The eflects expected from irradiating a beta-unstable nucleus having a very low-lying excited state with a resonant
X-ray laser are investigated.

Much as the availability of optical lasers
brought about a revolution in atomic spectros-
copy. strong short wave length X-ray or gamma-
lasers would induce a comparable breakthrough
in nuclear spectroscopy. In this note we want to
determine the laser specifications which would
be necessary for that purpose. As an example (ZN)
we shall treat a situation as depicted in fig. 1. A Fig. 1. The nuclear energy-level configuration, which is
parent nucleus (Z, N) in its ground state a is el.wisioncd in the present paper; the parent nucleus (;. N )
assumed to decay via beta*-decay or orbital with ground state a has 2 Io.w-lymg excited state b which is

almost resonant with an incident X-ray laser of frequency w.
eclectron capture to the state c of the daughter Both states a and b are beta-unstable.
nucleus (Z = 1, N ¥ 1) which can be the ground
state or an excited state. In the presence of an
incident laser field which is closely resonant
with the excitation energy of an excited level b
of the parent nucleus the decay can proceed

(221,N;31)

allowed. a large enhancement of the total decay
can be achieved. A similar situation has been
referred to as excited state beta-decay in astro-
physics [1]. However, in the case we are con-

28

': A ¥ l.{l M
e

alternatively via absorption of one laser photon
and subsequent beta-decay from the level b. In
the latter case the beta-decay is governed by the
weak interaction matrix element V. instead of
V.. which specifies the ordinary beta-decay. By
comparing the decays with and without the laser
ficld. information can be obtained about the
matrix element V. which is inaccessible other-
wise. In particular. if the dircct decay from a to
¢ is forbidden whereas the decay from b to ¢ is

' Supported in part by the Air Force Office of Scientific
Rescarch under grant No. AFOSR-81-0128.

! Supported by the US Department of Energy under Con-
tract No. DE-AC02-76CHOO016.

sidering, the decay proceeds virtually via the
intermediate state b, whereas at temperatures
considered in astrophysics the intermediate state
is thermally populated. Also, a similar level
scheme has been suggested in order to populate
the upper level (level b in our notation) of a
possible nuclear X-ray laser [2].

Our formal approach is exactly analogous to
the treatment of Raman scattering. We assume
that the laser is almost resonant with the energy
separation from a to b. The Schrédinger equa-
tion then yields a system of equations for the
amplitudes of the levels a, b and c. In the in-
teraction representation it reads [3]

16 0 031-9163/83/0000-0000/$03.00 © 1983 North-Holland
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id = Vi, oxpl-i(en,— w)r]b

+ Vi explite,. ~ e)]c. (1a)
ib =V, expli(en, ~ @)]a + Vi expli(en — €)t]c.
(Ib)

ic = V:h exp[—i(fk-ﬁ)‘]b
+ V. expl-i(e. — €)]a. (Ic)

Here the rotating wave approximation has been
introduced. w denotes the laser frequency. few,
is the excitation energy of the nucleus (Z. N).
he,=M(Z.N)-M(Z=1,N=51)is the
ditference of the nuclear masses and €. =

€. + €n,. In the case of beta*-decay ke denotes
the sum of the energies of the outgoing neutrino
and electron or positron. including the rest
mass. For orbital electron capture fie includes
the energy of the emitted neutrino and the
atomic binding energy difference of the cap-
tured electron minus the electron rest mass. At
the intensities we need for the examples at the
end of this letter we assume that the nucleus is
not completely ionized so that electron capture
can still take place. We also assume that inter-
nal conversion from b to a or the inverse
process of nuclear excitation by electron tran-
sition [4] are negligible with respect to the sti-
mulated electromagnetic transition. #V,, is then
a definite electromagnetic multipole matrix
clement or the sum of several of them. which
can be related to the half-life of the level b.
hV, and hV, are the weak interaction matrix
clements which govern the decays from a and b
to c. respectively. These matrix elements include
not only nuclear wave functions but also the
radial part of the electron and neutrino state.
We do not have to include phenomenological
dampings for the levels a and b, since our des-
cription includes all possible decays of them. If
¢ is an excited state we should. in principle. add
a damping term. Since however, the population
of this level will remain small in any event. we
can safely neglect this small amount of leakage
out of the system.

Since due to the stimulating laser feld the
coupling between a and b can be quite strong
we shall proceed by first solving egs. (1a4) and
(1b) exactly after putting ¢ = 0 and then in-
tegrating eq. (Ic) after inserting the solutions for
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a and b. With the initial condition a(0) =1,
b(0) = 0 we ger after the first step

a = (12\)-A_exp(iA.0)+ A, exp(iA_1)] . (2a)

b = (V.2\)exp(=iA.t)— exp(=iA-1)] . (2b)
with

A= [(Gh, - 0)2/4 + 'Vabl:]”: . (3)
A-={(w—€n)2xA. )

Inserting cqgs. (2a), (2b) we can now integrate
€q. (Ic) subject to the initial condition ¢(0) = 0.
In the limit r— x we obtain for the transition
probability per unit time
lcFre = (/2%

XVl Vi [8(enc — € + A.)

+8(en—€+A)]

+| Vil [A28(exc—€—A.)

+A8(ec—€=-A)]}. 5)
We integrate eq. (5) over the phase space of the

neutrino and the electron or positron, respec-
tively, for betas-decay

3 k)
dp.dp, ! njdfu de e~ (mc/hy) Pe.el .

2ah )y T I7c

or just over the neutrino phase space for elec-
tron capture

del' I b
f Q@nh) s I de.e.

with €, = E./h. €. = E./h in order to obtain the
total transition rate per unit time. We find for
beta®-processcs

r= 817+W' [ decefe; - (mcihy)?

XAV.LA (€= € = A + A (e — €. - A-)Y)
+ I V.lhl:l ‘,NI:[(eha - €.+ A0)-:
+(enc— €.+ A%))}. (6a)
and for ¢electron capture
F=Er ey Y Vo (A (en+ €. - AL}
+Al(ete ~AL)
+HValIVidl(en + €.+ AL)2
+(ente+A))}, (6b)
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S e,
.\,-:::: where x1 = x* for x >0 and x3 = 0 else. The R = |Vid® (phase space) 9
:}: electron energy for capture is given by €. = 7 2]V.f (phase space). ®
e mc*/h — €, where fie, denotes the atomic binding In additi h .
A energy. The first term in egs. (6a), (6b) describes : addition to the first factor in this ratio. :nlso
the direct decay from a to ¢, whereas the second : c:ico:d c:" bel;nuci:llarggrl:han done. .
e specifies the decay via the virtual intermediate :asc . ac‘: '.s E‘.“'l | ont',a :wch ‘mf" ecay; the
PR state which can be significantly enhanced if the ze pace Is given Dy the shape factor (he
g | incident photon is resonant. notes the maximum released energy) [5]
,:::; Two limits of eq. (6a) are of interest: (a) if ©
1IN the interaction V, is weak or, equivalently, far fe)= ! dep(Z. R)
off resonance. i.e.. | V| €}j€n, — w|. we have for mcit
X0 beta®-decay (analogous equations hold for elec- ) 2 s
o ron cnpt:§e§ gous €q X e[€2 - (mc/h Y] (e, - €) .
oYy :

p(Z. R) is the electron density at the nucleus
which. if relativistic Coulomb corrections are .
taken into account. depends also on the nuclear |
charge and radius.

l b 2 "4
> = s I de.e[e2— (mc¥hy]*?
X (| V(e — €)?

+ [| Vol Vsl /(€00 — w )] '

X [(€n =€) + (€ + w — €)3]} Q)]
where the first term specifies the decay rate in
the absence of the laser: (b) in the opposite case

of comparatively small detuning. i.e. Y€, — w| <
V. we have

Case (b) applies when
K*=4V, [ /(e — w)y> 1. (10)

In any experiment the laser will be tuned to
resonance as far as possible. Hence, we should
in the definition of K replace jen,— w} by a
quantity Aw. which is the bandwidth of the laser

N | or the width of the nuclear level b, whichever is
;.:, M= Brics j de.e[€2— (mci/h Y] larger. The matri:f element I.V,.,l is related to the
N : ] spontaneous multipole matrix element | VY| by
RS a« ™ € abt)+
W X4 Ve l(€xc = € + | Vi)
; Va2 |Vl = NIVl (1)
- +(€x— €.~ |Val)2}
) + | Vall(ene — €. + | Vi) where N ls'the number of laser photo_ns. and
. N V3, determinces the spontianeous half life of the
ot +(ew— e~ [Vl ®) level b via [6) =
Q- ’
S . .
n In this case. the two level system (a.b) is . T
o - V3= @7 w1 : V) 'c'In2, 12
N :'_f saturated. Hence the levels a and b are ap- IVl = r2V) (12
Lo proximately equally populated. the matrix ele- with V the normalization volume. Here we
~\. ment V,, has cancelled from eq. (8). and the assumed again that internal conversion be neg-
AN direct decay from a to ¢ is reduced by a factor ligible. If it is not. the lifetime 1, ; should be
" " of ~2 with respect to eq. (7) (note that the corrected for according to the tabulated internal ‘
gty term |V, in the square bracket will be negligi- conversion coctlicients [6]. Using eqs. (11) and Py
e ble under almost all circumstances). (12) we now have .
o " < . . N
i of paramount interes ) - an o e
N _ Obviously, case (b) is of p nterest K= Q7Y ' In 2N/ V)W dw ) (13a) |
S0 since it allows for a comparison of the weak
" matrix elements V,c and Vi.. The branching or in terms of the intensity of the lascr field U
".-.' 1 X b-‘C and a—cCis P2y -8 s . 2
A':.'J ratio Of'thc two pfosesseb,d-’ . Ri=1.1x10 "(Nl(“/'lw )‘(w/Aw)‘l[\V/L‘M']
Yot proportional to | Va¥/| Vul’. The decay enhance- x (1, s])" (13b) s
X ment duc to the laser reads in the particular v
‘.. case where V., is classified as forbidden where- The requirements which have to be met by the
D as V) is allowed, laser in order to achieve K = | are very severe. '
-~
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However, even if K*< 1, eq. (7) shows that the
decay is still enhanced by a factor of 1+ R with

R=KR., : (19)
a
%.F' 117 ns — 022
. 1
/A €x0Y o
9/,
(100%%) 34 004
'——— 00
%g I 1;‘3 Xe
b
% 90 ”54 061
%0 6x10y 06
IS (100°%)
3% 00
137 137
ssaa 87 La
c @r———— 222
of——218
4'—— 190 )
@180 _1g2
* 10
5 -:Xpus
°. 1.
2*—— 144 2 50
(68%) (32%)
€Ec g
0" on
0————00
138 138 138
3680 5oL0 sace

Fig. 2. (a) Level scheme for the beta-decay '3 — 1Xe.
Encrey level assignments are in MeV. Data are taken {rom
ref. (7, b) Sume s (4) for clectron capture from 'ELa to
"@Bin. (©) "ML decays via a second-order forbidden decay
both by 8~ and by EC. Both deciys are allowed from the
(3) -level,
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which can be of order unity or larger even for
K:<1.

We now want to discuss some examples for
the scheme discussed thus far. '§I decays by a
highly forbidden decay to a low-lying excited
state of '§Xe. From its excited 5/2*-state an
allowed decay to the same level can take place
as well as a forbidden decay to the ground state
of Xe (see fig. 2a). If we take for the parameter
Aw the natural line width of the 5/2*-level and
have in mind that the half life 1,; to be used in
€q. (12) excceds the actual half life by the in-
ternal conversion ratio. we find from eq. (13b)
that we have K*=1for [ =2x 10" W/em?, A
similar example relating to electronic capture is
given in fig. 2b. With analogous assumptions we
need in this case 7 = 6x 10" W/em? in order to
get K* = L. Already a preliminary search of
nuclear data casily yields examples with even
lower ratios fiw/mc*. However. this advantage
tends to be more than compensated by the
rapid increase in the internal conversion ratio
for decreasing w. Finally, fig. 2c exhibits an
example in which a highly forbidden transition
is rendered allowed by E2-absorption of one
photon with fiw = 0.072 McV. In this case, an
intensity of 4% 10" Wiem® is required in order
to achieve K7 = 1. In all the preceding examples
the degree of forbiddenness is reduced by two.
at least. Henee a significant enhancement would
already show up for K2 < 1. Whereas the
required intensitics suggested by these examples
do not seem to be extraordinary the assumed
degree of monochromaticity might. Our
assumption of ncglecting the laser band width
with respect to the natural line width of the
nuclear intermediate level comes up to
demanding dw/w ~ 8% 107" for '®La (fig. )
and dwiw ~ 1.4 % 107" for '3 (fig. 2a). Of
course. in view of eq. (13b) the requirements as
10 dw'w can be relaxed at the expense of a
higher intensity,
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A NOTE ON TOTAL CROSS SECTIONS AND DECAY RATES

IN THE PRESENCE OF A LASER FIELD ¥
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It is shown that in the quasiclassical regime total decay ratcs of neutral particles are unaffected by the application of an
intense laser field and decays of otherwise stable charged particles cannot be induced, The mcthod can also be applied to

scattering problems in the presence of a laser field.

It is well known [1] that in the presence of a re-
coiling agent there can be a significant energy transfer
between a charged particle and a laser field. This is in-
dependent of the frequency of the laser field and pro-
portional to the square root of the intensity. For an
intensity of 1018 W/cm2 its maximum is of the order
of 1 MeV. While such an intensity is certainly high, it
is not out of reach of present day lasers {2]. Hence
the idea was near at hand to investigate whether decays
of elementary particles which proceed slowly or not
at all due to lack of energy could be enhanced or in-
duced by the application of an intense laser field.
However, early attempts [3] (for a recent review of
various decay processes in various external fields see
ref. [4]) to calculate these effects brought about
significant effects on decay rates only for extremely
intense fields of the order of the critical field strength
Ey=c3mljen =1.3 X.10'6 V/cm corresponding to
an intensity of 4.7 X 1029 W/cm2, The required in-
tensity can reduce by several orders of magnitude if
very small mass differences are involved [3,4], but
still remains much larger than the nowadays attainable
1038 W/cm2, In view of the above mentioned large
energy transfer at such an intensity this non-effect

@ Work supported by the U.S. Air Force Office of Scientific
Research, Contract sAFOSR-81-0128-A, Preliminary ver-
sion of this work in Appl. Phys, B28 (1982) 310,

0031-9163/83/0000-0000/$ 03.00 © 1983 North-Holland

has been somewhat puzzling. In this note we shall
point out the reason for the fact that, while decay
spectra and differential cross sections easily exhibit
enormous effects due to an applied laser field, total
decay rates and cross sections stubbornly ignore its
presence up to an intensity of the order of the critical
one. The reason will be found in the basic classicality
of the interaction with the laser field as well as gauge
invariance. To be specific, we shall concentrate on a
plane wave laser field of arbitrary polarization and
frequency decomposition so that the explicit Volkov
solution {1] is available. However, our results are
certainly valid for a much wider class of external
fields including, e.g., constant magnetic fields. Though
our approach will be completely relativistic we shall
make explicit reference to nonrelativistic potential
scattering in the Born approximation for the sake of
simplicity. A more detailed account of the method
will be given elsewhere.

The Volkov solution of the Dirac or Klein—Gordon
equation in the presence of an external field, speci-
fied by the vector potential A, (x) with 3“4, =0,
can be written as (we use four-vector notation with a
metric such that ab = agby ~ ab; we let ¢ = 1 but
keep i)

wp(x) = D,,(E) exp{[~ipx + il’p(s)]/fn] . )
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Vo= 50 [ & -2A@) +ea?®) . @)

Here p is the momentum of the particle outside the
field, p2 = m2, n is the propagation vector of the laser
field, n2 = n4 = 0, and ¢ = nx. The lower limit of the
integral in eq. (1) is immaterial because it merely in-
troduces a phase which cancels from all matrix ele-
ments. D,,(x) is a Dirac spinor whose explicit form
need not concern us here and which, of course, is ab-
sent in case of the Klein—Gordon equation.

Consider now a decay process such that an initial
particle described by the wave function ¥p(x) decays
into N final particles with wave functions Y, (x) (n =
1, ...N). The wave functions are given by eq. (1) or are
just plane waves for charged or neutral particles, re-
spectively. The corresponding matrix element is

M= [d4 P, (0)..0py GINV,0) ®)

where I specifies the coupling. The integral is conve-
niently performed in terms of light-like coordinates [5]

u=th2=(x0-x3)V2, v=(x0+x3V2, (@)

where we assumed that the laser field propagates in
the x3-direction, The corresponding momenta are

P, =(P° +p3)N2Z, p,=@°-pPINVZ, ©)
so that

2
px=up, +vp, ~ i_El pix;.
We then obtain

M= (2nh)36<3’(p - "2,51 p,.)
X f du exp[—i(p“ - Ep,,‘u) u/h]

X exp[i (Vp(s) - Evpn(z)) /h]Dp'...Dp Nrop(é)
where the three-dimensional &-function contains the
momentum components p, and p; (i = 1, 2). We shall
evaluate the remaining integral by the stationary phase
method. Let us abbreviate the integral by
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ify
I= [ duBu)cawin, ™

o
In the quasiclassical limit % - O the stationary phase

" method yields

I Dexplid(uy )] Bu,)2mih/A" @p)] V2, (8)

where the sum is over all zeroes u,, of 4'() within the
range ug < u, <ii . We shall actually need I12. In
squaring eq. (8), we can discard the nondiagonal
terms: since the exponent in eq. (8) is inversely pro-
portional to A, already small vaniations in the momenta
and the laser field strength give rise to rapid fluctua-
tions of the exponential. Hence due to unavoidable
uncertainties in these parameters the nondiagonal
terms are wiped out and we can write

N2 = 221B(u,)\22nh/A" (u,)
n

= 2nh f du 1B(u)I25(A' () . )
In the last step we have made use of the representation
8x)) = 238(x ~ x1f ()l »

where the sum extends over all zeroes of f(x).

An obvious example where these approximations
do not apply is the emission of a photon by an elec-
tron in the presence of a laser field, i.e. high-intensity
Compton scattering [6]. In this case it can be shown
that the quantity A(«) becomes proportional to the
momentum of the emitted photon, Hence % cancels
from the exponent in eq. (7), and the condition that
A(u)/h varies rapidly as a function of its parameters is
no longer satisfied. This is related to the vanishing
mass of the photon. Consequently, we have to ex-
clude the emission of a single zero-mass particle from
our considerations,

Eq. (9) shows that we can represent the decay rate
M2 as an integral over an “instantaneous” decay rate
specified by a definite value of the phase u. This is a
consequence of our quasiclassical approximation. This
instantaneous decay rate, though for an optical laser
field hardly accessible by experiment, is certainly a
“truly physical quantity” in the sense of ref. [7]. As
such, it must depend on the laser field only via the
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kinetical momenta py;, (1) = p ~ eA(y). This can be
explicitly shown for eq. (6) by going over to the light-
like momentum componentsi5) and, if necessary, to
a lightlike Dirac algebra [5]. If we now calculate the
total decay rate by integrating eq. (6) over the final
momenta the laser field is completely eliminated from
the final state by changing the integration variables
from p,, 10 py;, - Obviously, this elimination relies
on the representation of the decay rate as an integral
over an instantaneous decay rate.

We now point out some immediate consequences
which are, of course, restricted to the regime where
our approximations apply: (i) the total decay rate of
a neutral particle is unaffected by a laser field; (ii) if
the decaying particle is charged, the total decay rate
does depend on the laser field via its kinetical mo-
mentum. If we would sum over the initial momentum,
too, the laser field would again be completely elimi-
nated, This implies: (a) if the particle is stable in vac-
uum it remains stable in a laser field (an apparent
counterexample, the decay e - ey, which does occur
in a laser field but not in the vacuun, has been dis-
cussed above); (b) if it is unstable, the decay might be
enhanced for particular momenta at the expense of be-
ing suppressed for others. so that the decay rate integrat-
ed over all momenta agrees with its vacuum value. For
Ip1 > elAl, however, this effect is expected !o be
small; (iii) for a laser field we have 4, = (4%- 43y
V2 =0, hence P, kin =Dy Consequently, integration
over I, d2p; ,, suffices to eliminate the laser field
from the final state. For a neutral decay this implies.
that while decay spectra plotted versus the energies
p,, of the decay products exhibit dramatic effects due
to the laser field, spectra plotted versus p,,  are un-
affected; (iv) the decay of a neutral particle with
charged constituents is outside of the scope of our
present considerations, E.g., our results do not apply
to multiphotoionization of atoms, which does occur
at impressive rates and energy transters [8]. Also,
whereas the enhancement of 8-decay of a neutron is
ruled out (conclusions to the contrary [9] originate
from insufficient numerical estimates), the enhance-
ment of nuclear B-decay is still viable, though not via
a final state interaction [10,11].

It should be obvious from our derivation that it
applies to a more general situation than the plane
wave laser field which we considered. We expect it to
apply whenever 3 WKB-approximation for the wave
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function,

is appropriate. If the classical action § depends on
more than one coordinate the stationary phase ap-
proach formulated in eqs. (7) to (9) should be re-
considered. The limits of applicability of the latter are
difficult to assess. It certainly breaks down when the
field strength becomes comparable with the critical
field strength Ey which is a genuine quantummechani-
cal quantity. In that event the quasiclassical approach
can no longer be expected to be sufficient. However,
as mentioned at the beginning, this is far beyond the
realm of laboratory experiments which are within
reach in the foreseeable future.

There is a close connection between our present
approach and the infrared problem of quantum elec-
trodynamics (which is classical. too). Cross sections
have been shown to be essentially independent of the
presence of an arbitrary number of soft photons in
the initial as well as in the final state {12).

Finally, as an explicit example we shall consider
nonrelativistic potential scattering in Born approxima-
tion, in order to discuss the stationary phase approach
in more detail and to outline a simple way to derive
the cross section, The transition amplitude (3) is in
this case

=~ 1 [ 4 4 VY00, an

where we now use the nonrelativistic limit of the
Voikov solution (1), (2) in the dipole approximation,

Vp(x) = exp (—ipx/h

mhf de' (2pA(r") - eA2(!’ )]) (2

The introduction of lightlike coordinates is now ob-
solete. and eq. (9) yields the transition probability
A2 = 2Tl - P2

T/2

Xf dedpy ~ po + (e/m)(p — pHAW)), (13)
=T/

with p, = p3/2m, pb =p'22m, Eq. (13) can be re-
written as
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IA2 = @rm/m)| V(= pyin - Pl

X[ s, - pia). (14)

This makes the exclusive dependence on the kinetical
momenta obvious which has been stated above on
general grounds, We evaluate eq. (13) explicitly for
Al =acos wit, A2 = —asin wt. The result is

A2 =QT/MIV(h—1(p - p)I2

X [(eaqp/m)? — (g — Pg)?)1;V/2, (15)

where g is the transverse momentum transfer
%; |2
qT=(.l(P,'—P,')) ,
'=

and x¥ =x¥ if x > 0 and zero otherwise, We note that
in the limit @ = Q0 when the laser field is switched off
we have

IA2=QaT/mIV(A~p - pP')I28(Py — pg)-  (16)
The cross section is

2 U
do= m” lpl

S BT [(eaqr/m)? — (py - Pg)? 17112

X [V(h=}p — p'))I2 49’ dp)y
1p’l ' -
= 1_r_|!|p_| [(eagr/m)? — (py - )] 7 1/2
%1 4 ap; 7
X d_Q_' dPo ’ (‘ )
which has to be compared with the exact result [13,
14]
_lp'l 2 doe
do, = E’TJ" (eaq/hwm) i e . (18)

The latter is the cross section under the condition
that n photons are emitted, i.e. nhiw = py — py. In
view of egs. (17) and (18) we realize that our ap-
proximations come up to

By a2 - nd); V2, 19

Eq. (19) is obtained from Debye’s asymptotic formu-
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las if (i) n ® 1, (ii) the actual rapid oscillations of the
Bessel functions J,,(2)2 as a function of n are averaged
over and (iii) a rapidly decreasing exponential tail for
n > z is neglected. If we are not interested in dg,, for
a particular 1 but only in the sum £7! do,, with

ny - ngy > 1, the assumptions (ii) and (i) are very
well satisfied. Egs. (17) and (18) then agree if we
identify do/dp{, with do,/hw. The approximations
which are inherent in eq. (19) have been extensively
discussed in ref. [13]. Hence we will be content with
pointing out that it is a classical approximation: both
the rapid oscillations of J,,(z)? as a function of n and
the exponential tail, which originates from energy
transfers nfiw in excess of the classical interaction en-
ergy eagr/m, are quantum features. As such they have
dropped out of our quasiclassical approximation.

We benefitted from discussions with M, Hillary.
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It is shown that radiation fields well below the critical field strength

A
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cannot induce any noticeable enhancements of nuclear decay rates.
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In a previous note [1] we have shown that the total decay rate of a neutral
free i:afticle decaying into various charged pari:icles is unaffected by the
presence of an external electromagnetic plane wave field as long as the
quasiclassical regime applies. This is, roughly speaking, the case if the
external field is significantly weaker than the critical field strength

E = m2c3/eh ¥ 1.3x1016 volts/cm, which is completely out of reach for all

crit
plane wave fields which can be generated in a laboratory.*

Recently, it has been claimed that forbidden nuclear beta-decay can be very
significantly enhanced by the application of an intense radio frequency field
with a field strength of 10* ... 10° Volts/cm [2-4]. The idea was that due to
the presence of the external field the normal selection rules should lose their
relevance. The present authors contested this claim on the basis of independent
calculations in the nonrelativistic limit which showed that the enhancement

could be, at best, proportional to the ratio E/E of the applied over the

crit
critical field [5]. More recent explicit calculations demonstrated that,

actually, the enhancement goes with (E/E )2 [6]. We also pointed out the

crit
analogy with the above mentioned no—go theorem for free particles [5]. It has
been argued that this theorem since it was formulated for free neutral particles
does not apply to nuclear decays [7]. Tais criticism is justified, in
principle. It is the purpose of this note to extend the no—go theorem to the
latter case, thus giving a very simple and very general argument against the

possibility of altering a nuclear decay rate, be it forbidden or not, by an

external electrcmagnetic field under the cited conditions.

t."-'::" The essence of our previcus argument can be condensed into a few sentences:
e . . . . . .
A in the quasiclassical regime the differential decay rate can be written as an |

* Actually, what matters here, is the field strength in the rest frame of the -
L particle. Hence, the quasiclassical regime does not apply, for example, to
R ultrarelativistic electrons (v 2 10°) in an intense focussed laser field with
1010 volts/cm.
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inﬁegr.al with respect to time over an instantaneg:usmdecay rate which depends on
the instahtaneous value of the vecto'r potential A(t) of the external field.
This instantaneous rate, being a gauge‘invariant physi;al quantity [8] must
depend on the external field only via the kinetical momenta p - eA(t) of the
charged particles iq the %inal state, since the decaying particle was assumed
neutral. In obtéining the total decay rate, the integration over the canonical
momenta_g can be replaced by integration over the instantaneous kinetical
mcmenta 5 - eK(t). Thus all dependence on the external field A(t) is
eliminated. If the interaction of the nuclei with the field is neglected as it
is in Refs. 2 - 4, this argument carries immediately over to the case of nuclear
decays, as we shall now demonstrate in detail. We shall restrict ourselves to
.nuclear beta-decay. However, the generalization to, for example, internal
conversion or radiative transitions, is mainly notational and should be obvicus.
Within the model adopted in Refs. [2 - 4] the decay is governed by the

matrix element

N ->

iEft -1efK(u)r .
L

M A Id X e e 0¢(r)

-iEt ie AT
x gVe e ¢, (1)

iqx/heipx/h *

x e VP(U) ,

(1)

with
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{
-.:f-fj the Volkov part of the electron wave function. We shall ignore spin for the
?"'-\.j time being. We let c = 1, but keep h. In Egs. (1) and (2), the vector
E potential Alw), u=t -z, represents the external field which propagates in the
3
Y Y
-‘_:ﬁ: .. 2z=direction, its propagation vector being n = (1,0,0,1) so that nA = 0. We do
'ifi'.j not have to specify its frequency decomposition nor polarization. The neutrino
" .
. momentum is denoted by g, and p is the momentum of the electron outside of the
e i : N
;i:\; field. The nuclear wave functions are exp(--i.E:i ft + i"e.'1 tﬁ(u)?} & f(r) for the
! 14 H ’
:J-::f initial and final state, respectively, gi £ being effective charges [2]. The
W~ ’
¥ ~wave functions ¢i f(;) are eigenfunctions of the effective nuclear Hamiltonian
‘3::::: Ho = = (h%/2M, £+ V(T) with eigenvalues E, ¢+ Contrary to appearance, the
}:.\:j nuclear wave functions do not incorporate any interaction between the nucleus
1‘\v.
( and the field; the factors exp(i?-ii ﬁ ) are necessary in the Coulormb gauge which
:::::f we have tacitly adopted by using the Volkov solution (2). We have discussed
‘:::'..-: this point extensively in Ref. 5. Finally, in Eq. (1) the weak interction
‘ ,' responsible for the beta-decay is represented by gV.
-."_'-.-: Changing the integration variables in Eq. (1) to T and u and rearranging
A%
b2 terms we can write
s -> - -
: M~ jduog (qp + pp - eA(u), 4, - qo *+ P, - Po - Eg + E))
L (i/n) (E; - E; *+ qo + Polu
x e V_(u)
o P (3)
o where
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and we have used that 3f :’31 = e [2], which is a consequence of charge
conservation. The $ﬁbsc£ipt T in Eqgs. (3) and (4) designates two-vectors,
transverse to the propagation direction of the field, e.g. ET = (px,py).

Because the integration in Eq. (4) is, due to the presence of the nuclear wave
functions, restricted to |r| ¥ Ry with R) the nuclear radius, the form factor (4)
is a slowly varying function of its arguments. Hence we may evaluate Eg. (3) by
stationary phase integration, treating Pe; AS slowly varying. With obvious
abbreviations we then have

i E(u)

M A fdu Ok

- (i/h)E(u.)
2=ih n
§Z " L e D(U ) ’
n E (un) n (5)

where the sum goes over all zeroes u of E'(u). The following is strictly
parallel to Ref. 1: in squaring M we can érop cross terms which would yield

rapidly fluctuating contributions which average out. Ccnsequently

lo(u )|2
2 n
[M]2 ~ Z‘thz‘ Tl
= 2 ]dUIo(u)Iza(E'(u)) , (6)

s0 that the differential transition rate is represented as an integral over an -

instantaneous rate. As argued above, the latter can only depend on R(u) via the
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ALIOWED NUCLEAR BETA DECAY IN AN INTENSE LASER FIELD 4
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R. R. Schlicher*, W. Becker+, and M. O. Scully ¥ 7

TInstitute for Modern Optics T
University of New Mexico

- Albuquerque, New Mexico 87131

_ "Max-Planck Institut fir Quantenoptik
D-8046 Garching bei Minchen
West Germany

INTRODUCTION

It is the purpose of this lecture to study the influence of
a strong external electromagnetic field on the spectrum of the
emitted particles in a nuclear beta decay and in particular on
the lifetime of the radicactive nucleus. The possibility of
manipulating nuclear 1lifetimes (1] in a laboratory is very
exciting and could bring important applications. The first
experimental proof of this effect is more than 30 years old
{2,3]. Experimentally accessible are those nuclear decay mcdes
which involve an interaction between the nucleus and the atomic
electrons such as internal conversion [3] and orbital electron
capture {4] which is closely related to beta decay. By changing
the chemical environment of the atom, by applying high pressure
technology, by optical excitation with strong fields, by ioniza-
tion and implantation, etc. the electronic structure of the atom
can be modified, which results in changes of the nuclear lifetime
up to a few parts in 10¢ (4].

L However, it always seemed hopeless to influence the majority
:!';,‘3 of the nuclear decay modes which take place without any inter-
‘_ action between the decaying nucleus and its environment. All
AN imaginable fields in a laboratory are weak compared to the strong
:}' interaction or the Coulomb field at the surface of a nucleus.

'. . 8Supported 1n part by the Air Force Office of Scientific Research
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Hence, changes of these nuclear decay rates have anly been inves-
tigated under conditions which are of interest in astrophysics.
In particular, nuclear beta decay was studied (i) under the
ocondition of a statistical equilibrium in stellar interiors wnere
excited nuclear states are thermally populated [5]), (ii) for
single photon absorption by the emitted electron from a Planck
spectrum at stellar temperatures of the order of 108 °K (6], and
(iii) for a strong uniform constant magnetic field [7] as it
exists on the surface of a pulsar.

Due to the ongoing recent progress in the development of
high power lasers it is nowadays also possible to produce extra-
ordinarily strong fields in the laboratory. For example, in th=
beam of a MNd-glass laser, which produces TW pulses, the intensity
can be (after focusmg the beam down to, say, ten wavelengths) of
the order of 10'® W/em? corresponding to a field strength of
about 101!° V/cm. These experimental facilities suggest the
theoretical treatment of nuclear decays in the presence of strong
electromagnetic plane wave fields. o L

The effects of intense plane electromagnetic waves on
different quantum processes were already investigated two decades
ago [8]. The interest soon focused on the decays of elementary
particle like muons and pions [9] or neutrons [10,11] under the
influence of a monochromatic external field. A common feature of
Refs. 7-9 and 11 is the result that the influence of the external
field on .the total decay rate depends cn the ratio between the
field strength and the so called critical field strength
E. = m2c3/eh. This is the 1limit for the applicability of
classical electrodynamics, beyond which quantum effects are
dominant [12]. This result seems to indicate that the influence
of an external field of optical frequency on the lifetime of an
elementary particle is a pure quantum effect which is very small
as long as E is small comparad to Ec.. For electrons the critical
field strength is about 1.3x10*° V/em and therefore still far out
of the range of present laser systems.

On the other hand, Ref. 10 predlcts a measurable change of
the lifetime of free neutrons in presently feasible fields.
Furthermore, during the last few years nuclear decays in the
presence of intense plane wave fields have also been investi-
gated. These calculations predicted appreciable enhancements of
the total decay rates in the field of available lasers, both for
nuclear garmma decay [13] and nuclear beta decay [14], and also
recently for forbidden nuclear veta decay [15].

In these lecture notes we will follcw Ref. 14 in describing
the decay process. This implies the use of a modified versicn of
the Keldysh approximation [16] which was introduced for the
theoretical description of laser-ionization in the so called
electric field gauge. This approximnation includes two steps:
(i) the interaction between the bound system and the field is
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neglected, i.e. we consider 'the nucleus to be unaffected by the
external field; (ii) in the final state the interaction between
the emitted particle and the residual bound system is neglected,
i.e. we neglect the Coulomb interaction between the emitted elec-
tron and the residual nucleus. The quality of the first approxi-
mation will be demonstrated in the next Section. With the second
approximation we neglect a usually small effect [17]. 1In the
framework of this approximation only the electron emitted in the
nuclear beta decay couples to the external field. This is why we
choose nuclear beta decay as the most promising decay mode: the
smaller the mass of the emitted charged particle, the stronger
its coupling to the external field and hencethe- strcnger the

laser impact on the decay process. . . . ... . _ . _._. . _ .

There are two general reasons why we might expect a change
in the nuclear lifetime in the framework of this model: (i) it

‘is well known for ordinary beta decay that taking into account

the Coulomb corrections between electron and nucleus changes not
only the spectrum of the electrons, but also the nuclear lifetime
[17]. Hence, including the interaction of the electron with the
laser field could result in the same effect; -(ii) as we will show
below the most likely energy transfer from, say, a Nd-laser with
an intensity of I ~ 10!8 W/am? to an electron emitted in a
typical nuclear beta decay is of the order of MeV! Such a large
energy increase leads to a much larger phase space of the emitted
electrons which should result in a -considerably faster decay of
the nucleus. ) D ST

In this lecture we shall restrict the discussion to (i) the
nonrelativistic theory and (ii) to electromagnetic fields of
circular polarization. This will simplify the calculations so
much that they can easily be followed in detail. Strictly
speaking, the nonrelativistic limit holds only if the mechanical
momentum p-el of the electron in the field is small compared to
mc. This implies a limiting condition for the kinetical electron
energy E outside the field, E = p-/2m << mc? and for the strength
of the external field elAl/mc = v << 1. This approximation seems
to be unrealistic for many nuclei whose energy release in the
decay is larger than the electrcn rest mass as well as for the
fields which we intend to consider. Hence, in principle, the
Dirac theory is required for the description of the electrons.
Actually, relativistic effects show up in both the electron
spectrun and the total decay rate. However, all the essential
physical features which are introduced by the interaction with
the laser field are included in the nonrelativistic theory in a
very instructive way. Furthermore, as we shall demonstrate, the
change of the lifetime in the presence of an external field is
fairly well described by the nonrelativistic theory for all real
nuclei and arbitrary field strengths, not only in the nonrelati-
vistic limit |p~ed| << mc. Hence, we will present here only the
nonrelativistic theory. However, all the numerical results shown
are gained from the relativistic beta decay theory for allowed
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transitions with Dirac wave functions and V-A interaction. This
theory will be published elsewhere.

We will first derive the wave functions of the different
particles involved in the nuclear beta decay. This is based on
Ref. 18. Wwhhat follows will be completely independent of Ref.
18. Next the partial transition rates will be calculated in the
electric field gauge and in the radiation gauge. We will then
evaluate the electron distributions and finally we will discuss
the nuclear lifetime.

WAVEFUNCTIONS

For the calculation of.the wavefunctions of_the different
particles involved in a nuclear beta decay we have to recall some
points discussed .in Ref. 18. _We can ocbtain the Hamiltonian of a
particle with charge e mteractmg with an external *electro-
magnetic field from the Hamiltonian H = p2/2m + V(r) of "a
particle in a potential V with the help of the substitution

PoP-cA@e)  HoHI-cUley.

This procedure yields the Hamiltonian

s 3 .
. 3 ] > 3.) 3,-‘ Y
.H =~QTM,(P ~-eh Qr,é)) + e/LL <€) + VLV/,(z.l)
The vector potential A8(Z,t) and the scalar potential UB(L,t) are
related to the electric field E(r,t) and the magnetic field
B(z,t) by

~>) N 4;‘7»
Bire¢) = Ux A3 ¢).

(2.2)

The index g denotes the gauge freedom in the potentials. E and B
remain unchanged if we transform from a gauge (A%, U°) to a gauge
(R8', 48" according to

N RN
A(Yé} - /4C73é/=r43@7‘;+/+7)/@'3,f)
Wiee) o wWize) < UEe) -2 XL,

(2.3)

-
where X is an arbitrary function of r and t .
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Also, the state vector l‘l‘g>, which is a solution of the
Schrédinger equation

B2 IS = B[S

Y ‘

(2.4)

depends on the gauge. The wave function in a gauge g is
transformed to another gauge g' by the unitary transformation

' D
e gih_iex@ab oy,
¥Yi5e) > ¥Ee) = e A %C’Z"/. (2.5)
The Hamiltonian has to be distinguished from the energy operator B

I L (Rl AwdS
el -k (F-edey ).

This (unperturbed) energy operator is a physical gquantity in the
sense of Ref. 19, since it transforms under a gauge transforma-
tion like

(2.6)

/ ‘e /% ~lex/6
ed . XMt :

In contrast, the Hamiltonian is an unphysical quantity since it
transforms like

/
HY = e

This distinction is important for the definition of an unper-
turbed state as discussed in Ref. 18.

Throughout these lecture notes we will describe the laser
field by a uniform electric field E(t), neglecting the magnetic
field. This long wavelength or dipole approximation is well
justified for nuclear_beta decay since the wavelength of visible
light is about 5x10 ~°cm, whereas the radius of a nucleus is of
the order of 5x10 ‘3cm. Hence, when calculating matrix elements
of the nucleus-laser interaction the external field can be
considered as constant over the integraticn area. Within this
long wavelength approximation two gauges are most frequently
used: the electric field gauge (E-gauge) with

[ S

Z\E(f) -0 Wwe) - —ev"\(:‘@/ (2.7)

3L




e A A R T i ks R4 A WS

and the radiation gaugé (R—gauge) with
R ) D | R >
Al) - - Jac B, Wit
%
th gauges are reiated by the gauge transformation

0. (2.8)

+
= SR L o S '
Yroe (Bt)= - A7 - % fJor Ee).
€y

For the nuclear wave functions to be used for the calculation of
the beta-decay we shall adopt a simple one—particle shell model
description: the nucleus is divided into a "valence” nucleon and
an inert core which is affected neither by the field nor by the
decay but generates the potential V(¥) for the valence nucleon
which decays. The valence nucleon has an effective charge ey and
mass M. Both do not have to be specified; we have just to recall
that because of charge conservation the effective charges of the
initial and final valence nucleon will satisfy the relation

e\y ~ey,f=te for beta*-decay (e = -le| denotes the electrcn
harge) .
It is convenient to use the E-~gauge. 1The nuclear wave-

function ¥x(r,t) is then a solution of the Schrddinger equation
) D —_

' é T o - - _ S L ),

7'#‘52 YN(T?t) (ﬁ‘" + V) - e, E@)"') %wa)-(z.m)

The mteractlon term -e\_.r is at the nuclear surface of the order
of 1072 - 107!ev if we apply a field of 10'° v/em. This is
completely negligible compared to the nuclear binding potential
or to the Coulomb potential at the nuclear surface, which are of
the order of ileV. A noticeable modification of a bound nuclear
state would generally require field strengths close to the
critical one. We shall therefore assume that the initial and
final nuclear states do not interact with the external field.
This is the first part of the Xeldysh approximation.

As discussed in Ref. 18, the noninteracting state is defined
as an eigenstate of the unperturbed energy operator (2.6), not as |
a solutign of the Schrodinger Eq. (2.4) in which the potentials !
“ and U® are set equal to zero. In the ._.-gauge this dlstmctlon
does not play a role since the Hamiltonian HE and the energy <
coincide. The noninteracting nuclear state is then a solution of
Eq._.(2.10) in which we drop the nucleus-field interaction term

-2 \Er :
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\PN@{—) = e 92’:/\1 ), (2.11)

where -\ is an ener::y eigenstate

( E_ + th'/) (P &) - E, @Nﬁ}'/. (2.12)

If we want to express the noninteracting nuclear state in the
R-gauge we have to be cautious. In order to obtain an eigenstate
of the energy operator ¢" (2.6) with the same constant energy
-eigenvalue Ey we must apply the unitary transformation (2.5) and
(2. 9)) We then obtain a wavefunction which is different from Eq.
(2.11

— R
Y () = e

‘e AT/ -Et/ 5+ o
e @,\, (2.13)

From now on we shall drop the superscrlp, in AR and refer with
the notation A to the vector potential in the R-gauge (2.8).

For the calculation of the electron wavefunction we use the
second part of the Keldysh approximation and neglect the Coulomb
interaction of the emitted electron with the residual nucleus.
However, the interacticn between the electrcn and the external
field should be taken into account exactly. Hence, we need an
exact solution of the Schrodinger equation for a free particle
(V = 0) in the external field A(t).

We notice now that it is more convenient to solve this
problem in the R-gauge

N —-R - - v ,p.&
42 860 £ (oA )

instead of the E-gauge

o —c
dab (E -eREe) iy
}‘_/ (’Yt (-—QTW er Et) i’eb—l 6) (2.15)

since the canonical mcmentum E of the free particle is a constant
of motion in the R—gauge, but not in the E-gauge. It is well
known in classical mechanics [20] that the i-th component p; of
the canomcal momentumn p is conserved if neither the vector
potential A8 nor the scalar potential U¥ depend on the i-th com-
ponent Xj of the space coordinate r. 1In particular, if A% and U&

|
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are spatially uniform 5 is conserved. This also holds true in
quantun mechanics: an operator is a constant of mot.on if it
does not exp11c1tly depend on time and if it commutes with the
Hamiltonian H®  Hence, if AS and U° do not depend on r the
eigenvalue of the canonical momentum p is a constant of motion.
This is trus for the Hamiltonian HN in the R-gauge (2.8) with the
long wavelength zprroximation for the field. |If we make the
additional assumption that the vector potentlal a(t) is switched
on and off initially and finally, i.e. A(t) = 0 for |t| > tg, we
can identify the conserved cancnical momentum with the momentum
outside of the field, which would be measured by a scectrometer.
Again, this holds only true in the R-gauge. On the other hand
the canonical momentum is not a physical quantity in the sense of
Ref. 19. Hence its eigenvalues are different in different
gauges. Especially in the E-gauge (2.7), where the vector poten-
tial vanishes and the scalar potential does depend on r, the
cancnlcal momentum p coincides with the mechanical momentum
T(t) = p - ed (t) and its eigenvalue is no longer conserved.

Since it is always convenient to exploit the existence of
conserved quantities, we like to solve Eq. (2.14) instead of Eq.
(2.15). Only in the R—gauge ¢an we make the following ansatz for
the electron wavefunction: 5 is characterized by the eigenvalue
P of the canonical momentum and we assume that it factorizes into
an unperturbed plane wave and a function f£(t) which depends only
on time, since also the field depends in the long wave length
approximation only on time

T FE;: -2 (FEt -3 //ﬁ
\_}‘eb‘;f) = 7[)(&)8 ( P/

In the nonrelativistic theory E is related to the canonical
momentun by

~

S

E = B .

QQYH. (2.16)

-

Only in the absence of the field denotes E the Xinetic enersgy.
By inserting the ansatz into the Schridinger equation (2.14) and
using Eq. (2.195) one optains the equaticn of motion of f(t)

nﬁ fe) = ( MLt)+§"- Atf/)f&/

Integrating this equatlon yields the exact solution of zg.
(2.14):
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where V denctes the normalization volume. The lower limit of
integration in Eq. (2.17) only contriputes a constant phase to
the wavefunction and is therefore insignificant. The analogous
solution of the Dirac equation is known as the Volkov solution
£21]. D

It is easy to check that the wavefunction -(2.17) - is an
eigensgate of the operator of the canonical momentum with eigen-
value p. Since the operators gf thg canonical momentum p and of
the mechanical momentum 7" = p - eA commute in the ,long wave-
length approximation, Y is also an eigenstate of T and of the

e
operator of the kinetic energy in the R—gauge

R TR e 2 7R
() Ye(r;'é) =°?—7/’—1 </§—84(t)) Y/e (’7%'6/ (2.18)

e . R .
The nonrelativistic Volkov solution ¥, has a time dependept
energ/ eigenvalue, in contrast to the non-interacting state 'e\,
(2.13) which has a constant energy eigenvalue Ey. '

In order to cbtain the soluticn of Eg. (2.15) in the E—gauge
we have to carry out the gauge transformation (2.3) and (2.9) on
‘Yg with the result

- _le Ae)= /4 TR
Y .&Et) - e / Y_Ft)

_42 -

Vs S s 5 2
= \,’ @70 —-é[(p‘@%) R "c\g_hq./[o(?(/s-e%))jﬁZ.l9)

where we used Eq. (2.16). We note that 'f'g depends only on the
eigenvalue of the mechanical mcmentum 7(t) = p - ei(t). This is
a physical quantity and has therefore the same value in any
gauge. Here we expressed 7 by the gauge dependent canonical
momentum and vector potential, both given in the R-gauge.

Throughout these lecture notes we shall describe tha laser
field by a circularly pgla;‘ized ronochrematic plane wave with
frequency w, propagating in €j3-direction

e e e e R s e
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ix;: The corresponding vector potential in the R-gauge reads

rre -

b N A ' A .

Alt) = A, (a, et - €, &wt.,-é) A, = E |

n _ d W (2.20b)

By inserting this vector potential into WZ (2.17) and dropping
- the phase which results from the. lower integration limit we

obtain
Y = ‘22 ’.l‘ ‘2 ~ —~~—
Ye&tf) = V e)CfZ“"t’—(EJ-"%’Ync)f—/Ar x

(2.21)
~ exp (Ve i (weey) ],

Here we introduced the azimuthal and polar angles ¢ and 6 of the
momentum p

Bo=Prssg, Po= Pring |, pr oSl = pond o)

The field dependence is expressed by the dimensionless parameter
v, which was introduced earlier

— < =
™ tb

p=eh _ e& _ mc = (2.23)
™me mWe hw Eco

E. is again the critical field strength E. = m2c3/eh = 1.3x1016
V/am. For practical calculations it can be convenient to express
v either by the intensity I and wavelength A of the field

9 I P -/9 9 _ ’
o elng = 7310 /('ZZ/IM’Z] I[l«//cm\)])

o?T'ZEOTh c

or by the photon density ¢ and the wavelength 1A
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Finally, the dimensionless amplitude z of the oscillating term in

the exponent of Eg. (2.21) 1s given by

2 = vﬁﬁr =
Aw

For circular polanzatlon the A’-term in Eq. (2.17) is constant,
A (t) Ag ‘ and gives rise to the field dependent energy shift
vimec=/2 in ¥ (2 21). In a relativistic context, this term is
usually mterpreted as a contribution to an effective mass. This
becomes apparent from the relativistic Hamiltonian

N Y
H - (fm’zc‘* + C:(,B‘—e/-’r).zjd

' o o &4 oy
((}y,‘z.J.e A, /CJ)C + CPp

(2.24)

Jepd )"

we shall refer to this term as the
It will play a crucial role in the

Hence, in the following,
effective mass correction.
following Sections.

The p X term of Eq. (2.17) is the origin of the oscillating
exponent exp(iz sin) in ¥R (2.21) and responsible for the fact
that the kinetic energy (f 18) is not a constant of motion. It
can be interpreted in terms of the electron undergoing field
induced rultiphoton transitions. We see this with the help of
the generating function of the Bessel function J,(z)

qu

2 J,(2) e

m=-00

12 s—mo( (2.25)
4]

This enables us to rewrite the nonrelativistic Volkov wave—
function in the form

FE(7e)
xQx/DZ)—:'—‘ [(54-’)2—):277704- ni,‘w)f - F’f]f‘ .

Although we only deal with classical fields we can interpret the
wavefuncticn (2.26) in terms of an infinite sum over n absorbed
or emitted photons.

Z \/LZ)enY)x

. R
The time dependent part of ¥, includes an effective energy
which changes in discrete steps of hw. This represents mul:i-
photon processes of any order n. We can estimate the most likely

...............
...............
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energy transfer from the field to the electron by considering the
behavior of J;j(z) as a function of the order n for fixed z. When
the rapid oscillations are averaged over, J3(z) increases slowly
with increasing Inl until it reaches its maximum around |n| = z.
For In| > z,J,(z) as a function of n decreases rapidly to zero.
Hence it is most likely that about z photons are absorbed by the
electron, corresponding to an energy transfer zhw = vepT. In an
external field with v of the order of unity the electron can
therefore absorb energy from the field up to the order of its own
kinetic energy, typically scme MeV for nuclear beta decay. This
strong energy absorption encourages us to expect a considerable
laser effect on nuclear beta decay. However, we realize already
that this will be counteracted by the increase of the electron's
effective mass.

Finally, we need the neutrino wavefunction. Since the
neutrino neither interacts with the laser field nor with the
residual nucleus, it is well described by a plane wave solution
of the Klein-Gordon equation

z ~%

Y, (Ft) -V

with the relativistic dispersion

Skp -—é; (Z?Q t —-%?53,);7

(2.27)

Ey = c[«}’f/u (2.23)

INSITION RATE

We now intend to calculate in the framework of the model
derived in tha last Section the effects of a strong laser field
on measurable quantities like the spectrum of the emitted elec-
trons and the lifetime of the nucleus. The transition amplitude
reads in first order of perturbation theory with respect to the
weak interaction

T/

Fay - -+ Jat <8 8, Fug 18V 1 ¥ui2 g

~

The weak interaction is denoted by (gV) where V is a dimensicn-
less operator and g is the coupling constant for beta decay,
g = 1.4x10 *?erg cm-. According to the Keldysh approximation
the electron wavefunction Ye 1is given by the exact solution
(2.21) or (2.18) for a free particle in a circularly polarized
field and the nuclear wavefunctions “y ; and Yy ¢ are given by
the noninteracting solution (2.11) or (2.13), respectively. The

J




uncharged neutrino is described by the plane wave (2.27). By
taking the wavefunctions of all charged particles consistently in
the same gauge, either the E or the R-gauge, we obtain in any

case ‘ 2 |
. T/Q l(E«‘-v—’me‘z‘pE»-d)f
l_ | = = “({ c x
) =~y I
_12§1M ((.L,f-/- ) ‘L‘ - eKLt);.'él# '(3.2)
x & f <€ ¢ éf 13\/( ?z‘ >

If we choose the wavefunctions in the R-gauge we have to make use
of the relation e - ;= — e in order to obtain Eq. (3.2).
For the energy raiéncc oﬁe has to take into consideration the
mass of the electron which is created during the beta decay.
Hence the value Q in Eq. (3.2) is given by

_ R4
Q'-‘— EN,I‘ - L’N,Jf- -mc . (3.3)

Since we are only interested in allowed nuclear beta decay we can
drop the factor exp{i(p-eA+q)r/h} in the matrix element. The
physical justification for this approximation is the fact the
electron and the neutrino do not carry away any angular momentum
in an allowed beta decay so that the spatial dependence of their
wavefunctions can be neglected. In the nonrelativistic thecry
this is a fair approximation. The nonrelativistic limit implies
|P - eA(t)] << mc, as discussed above. Since the spatial
integraion in the matrix element extends over the radius R of
the nucleus, which is of the order of some 10 !3cm, the
exponential factor can be estimated for all nuclei by

|(R-e® )74 | < [F-e2 (R/b < Rmclfhe < 0.0d <1,

Since we now dropped the factor exp iear/h, the discussicn of the
preceding Section on the question of when to take which wave
function, viz. (2.11) or (2.13), appears cbsolete. Nevertheless,
we have emphasized this point because it 1is important in
principle and of crucial significance in the case of forbidden
beta-decay [16, 32].

By the same arguments the space dependent factor exp(ia?}h)
in the neutrino wavefunction can be replaced by unity. If the
nuclear matrix element is abbreviated by
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the transition amplitude for allowed beta decay takes the form

R
Flm = -L V.. A4 ¢ -1281m wé+§pj *
L/ 1% \j s ;%C 9970 ( ( j

(3.4)
SN

* e\P[—;';(E./-g’mc + EV-Q)-GJ_

With the help of the expansion (2.25) Eq. (3.4) can be rewritten
in the form

oD

\ — _— —
Elr) = = X Vi 2_ Vv z) e )P X
(7) by e R

77 - g . (3.5)
x\/)o(-éex/mlfé‘(g+gmc * A—)}_a-n%‘w)f

This representation again allows for a simple interpretation in
terms of n photons emitted or absorbed by the electron.

For the calculation of the decay rate we only need the
transition amplitude (3.5) in the limit T+ «:

(a¥%]

[ —_— - — "h
Lo F) = -2 9V 3 Teje T,
T 00 hV M ==
(3.6)

x \97/_ /({g,,.%ﬁzmc{..a g)) - Q- n‘ﬁw)/#

With the help of the standard relation [22]

(Irde) )" o 7 NE)

we obtain the transition rate per unit time
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Only diagonal terms n = n' contrivute to |F(T)|? in the limit
T - » since the off-diagonal terms yield products of two delta
functions with different arguments. Due to reasons which will
become clear below it is convenient to introduce the dimension-

less quantity
R
o = (En‘-}’*ncz—&)/d’\w).

n

Eq. (3.7) can then be rewritten in the form

7 Vv <3 A &
W = oy Vv n- - ¥
v w I} ol %ﬁw n@) ¢ (n o mu)‘ (3-8)

In the next step we will simplify the sum over the Bessel
functions. In high power laser fields the argument z of the
Bessel functicn can achieve values of 103 to 10° as discussed
above. Hence, up to 10° terms can contribute to the sum (3.8).
An excellent approximation for Bessel functions of large order n
and for z > |n| is Debye's asymptotic expansion [23]:

_ 9572 2% 7
Vnz) =/°—5—_ R-n) " Cos (ﬁ—h —nawcos% -

=3
——

The rapidly decreasing exponential tail of J,(z) for In| > z will
be neglected, i.e. we set Jp(z) = 0 for In| > z. This approxima-
tion is only exact in the limit z-®, According to Eq. (2.24)
this corresponds to the classical limit h~ 0. As long as z is a
large number this classical limit is well justified. Further-
more, after squaring J,(z) we can average over the oscillations
in J§(z) since it is hardly possible in any experiment to
determine the intensity parameter V and therafore also z to such
an accuracy that the phase of the Bessel functions is precisely
defined. Also these rapid oscillations of J(z) as a function
of n are a quantum feature ([24]. This procedure then yields a
powerful approximation for the square of Dessel functions

-, - .
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S LN ER
—-function denotes the usual step function 6(x) =1 for x > O
0 for x < 0.

0
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Since we are not. interested in a particular term of Eq.
(3.8) with a fixed number n of transferred photons, but only in
the total effect of very many multiphoton terms, we can replace
the sum in Eq. (3.8) by an integral. By inserting the approxima-
tion (3.9) into Eq. (3.8) and carrying ocut the n-integration we
obtain the transition rate per unit time in the quasiclassical
limit

" < 2 £y 2
2 lglu ! B (- (e 2V )
i’)QV’zw \/'i‘-d - ("‘0 + % 2 (3.10)

If we recall that z and n are proportional to (hw) ! we notice
that in the quasiclassical approximation, which applies in the
limit hw << mc-, the transition rate w becomes independent of the
field frequency w. It depends on the external field only via the
intensity parameter v (2.23).

ALTERNATIVE DERIVATIONS OF THE QUASICLASSICAL TRANSITION RATE

There are two further instructive and easy methods to derive
Eq. (3.10) which illustrate its classical character. In the
first part of the current Section we calculate the time integral
for the transition amplitude (3.4) with the help of the
stationary phase method [25] instead of expanding the integrand
in terms of Bessel functions. The method of stationary phase
approximates the integral over a rapidly oscillating function by
the contributions from the regicns around staticnary points to
the integrand [26]:

fdf wf) 5 | " ik )
! € = ;—\‘x/://(én} .

Hers x is a large positive variable and £(t) a real function of
the real variable t, so that the integrand is rapidly oscillating
unless f(t) is stationary. Hence the major contribution to the
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value of the integral arises from the vicinity of the points t

at which f'(t, }) = 0. The sum over n extends over all stationary
points in the interval (a,b]. The stationary phase method
becomes exact in the limit x-=, i.e. for infinitely large
exponents. Hence the use of this approximation method for the
time integration in.Eq. (3.4) implies the transition to the
classical limit'h - 0 (i.e. z » ») already in the transition
arplitude F(t).

In order to apply the staticrary phase method to Eq. (3.4)
we first have to determine the stationary points tnp of the
exponent of the integrand:

Cof(w'tn4—7:) = é’(%o-i- E_”))

In order to obtain stationary points we find again the condition
z2 > (n, + E /hw)?. We furthermore note that the second deriva-
tive of the exponent has the same form

i—wi\/ —(”%4— )

at all stationary points. Thus we obtain for the transition
amplitude in the semiclassical limit

Fir) = - V=2 gy, 6 (- (22 )
VA (%Q—an%fz)l/“

Z) (no f:p)(amus 25@,_%); (4.1)
— 47 . .
Bl Oer 2 'Qmﬁo*@)]ﬁ

Cross terms from different stationary points will once again not
contribute to the transiticn rate |F(T)|- since the phases at the
stationary points tp are randomly distributed for all practical
purpcses so that the cross terms cancel each other in the limit
T »~. We have two stationary points per time interval 2r7/w and
hence wT/7 stationary points in the entire integration region
[-T/2, T/2]. We thus find from counting all stationary points in
IF(T)|2 the transition rate per unit time

............
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This result is identical with the quasiclassical approximation
(3.10) of the Bessel function approach.

There is an even simpler argument leading to Eq.(4.2) which
is classical from the outset. We can write the transition rate
per unit time for the decay in the absence of the laser field as

<7 _
o = B,

where

P (€)= /(Q-5-€). (4.4)

#ree

is the electron energy distribution function and E = p?/2m the
Kinetic energy. Of course, in the absence of the field the elec-
tron energy E is, for specified Q, a function of the neutrino
energy E,, only. In the presence of the field the kinetic energy
of an electron is no longer conserved but time-dependent (cp. £q.
(2.61)), so that

, / S - <
Ee) - &+ (F-eae))

—d 2 (4.5)
R I AT cos(wt+p)
L o

. - .
with p the conserved cancnical momentum. We now assume that when

the field is switched on, V¢ in Eq. (4.3) is unaffected but the
electron energy distribution P, (E) is changed into

4, 1 3r/w

Pe) _-_Q?‘—‘:_ Jae I (a-6, - Ee) ),
¢

(4.6)




This is the time average over the instantaneous electron energy
distributicn. If we recall that

(/\(/’/x)) Z‘ (/‘(kx)

Lk |

where the sum is over all zeroes x1 of f(x), and notice that
Q-E -E(t) has two zeroes within to<t < tg + 27/w, we find that

L8V 1™ Ple) e

agrees with Eq. (4.2). This procedure illustrates once again
that the approximation (3.9) for the Bessel functions as well as
the stationary phase method correspond to a purely classical
treatment of the electron-laser interaction.

By comparing Egs. (4.4) and (4.6) we can already anticipate
a general feature of the electron energy distribution which will
be more extensively discussed in the next Section. Due to the
field, the kinetic energy

a2

© Qm
in Eq. (4.4) is replaced by E(t) of Eq. (4.5). Now, if

leAl >> Ipfreel |pl will be much larger than Ipfreel in order
that

N : N 2
Pﬁfu = (p-eAt))

can be satisfied as prescribed by Egs. (4.4) and (4.6). Hence,
for strong fields, we expect the electron energy spectrum to
extend to much higher energies.

ELECTRON DISTRIBUTICNS

In order to obtain the angular distribution and the energy
spectrum of the emitted electrons the transition rate w has to be
integrated over the phase space of the neutrino and the electron.

-

I is given by

— Vd V
/ r 7 . (5.1)
f(Qrb N /(Qgr—r) ~

The total decay rate
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It is convenient to use polar coordinates for the momenta p and g
and to apply the dispersion relaticns (2.16) and (2.28) for the
electron and the neutrino. This yields

dJP = MYImE Ju B O(L:o(@qo(”}a)

8, o

0
s

02 / Qz B Q_ — 1 "1
el §L = E: E)) REYP Vo c*(é‘-y 0(15}, D{fp .
For the transition rate w in Eq. (5.1) we use the semiclassical
limit (3.10) which was shown to be an excellent approximation.
Since w (3.10) depends only on E, and via z and ng on E and 6 the
integrals over ¢ ,¢ and ¢ are trivial in Eq. (5.1). After sub-
stituting E, by vy

T
N £
Sh He
; I takes the form
.’:_:.:_' . r3 9
::-:I-: /"7 = \/«”m" (7"7 ).2{ l,/ </ -, { — . Q
B e/ (T ) [AELV \JE i x
e G- # c
.( -'. 1
- o ™ :
{ | < BlE=n)
e x D/X (k-7 ) .
ro \/ <L o
[ n, z -n
';-:::-:' We have two restrictions for the integraticn variable x which
) have to be satisfied simultaneously: (i) ng < x, corresponding to
e the condition of positive neutrino energy E, > 0, and (ii)
P -z £ X € z originating from the 6 -function. Therefore we have
T to distinguish between three cases: (i) if ng> z the total 1
g decay rate [ vanishes; (ii) if -z S ngy <z the x-integration !
- extends from nop to z; (iii) if n,y < -z the x~-integration extends ‘
- from -z to +z. This leads to the elementary integrals
o 2> d
'Z\."' N x—", ) 3 < 2 2 3¢
AN 7 - - .
e \/Olk(—-":z"—"‘ = "Jh:'\/2'-7'b¢ 4—(’% J-Q/(E—Q'?N")hmj
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N -2 J 2t —x o
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P The angle and energy distributicn of the electrons then reads
e
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whE Since ng and z depend on E and 6, the condition z > ng, i.e.
A
j}-;'.f - N3 2 :
S E+rlm-R < JInE i
- yields the limits of allowed emission angles 6 and of possmle
L4 electron energies E. For E<Q - \)sz‘-/Z this oondition is
-;.j:_' always satisfied. But for higher energies electrons are only
e emitted into a certain angular range. The limits for the
RN emission angle are for fixed energy E
o
( v?
g . = - - mc
.:._.; O 17f F - 62 4 )
T .
- \J\L;’l r = 2 v
o E+3—5— me ~ K g ¥
) ‘l?ﬂ l: > & - \_)_. TMC'-z
CV \mE o
y The limits for the electron energy can be obtained from the
\ condition sing <€ 1:
. B .;7,9 Q
Emyn =
'..5‘ (/-—)‘y}c --j()\/ /&Cl?‘”(‘ (5.4)
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S o

R R j
..... ‘.--. -u.-.-.-.-.\_h_ e T N e e e e e e t-~_L.L,__AAJ_.J,A‘A
L.L_A_.L.L._L ;_.J_.L_(LL.L_qu-! Aa®alataldael Q‘LI" Tt at At Al Tt e T T e Te Te s




R
45

3 8 i
TS AP SN

kY

')

Figure 1 shows for the relativistic theory the possible (E,£)
values of the emitted electrons in a laser field with an inten-
. 18 - . +
51t¥ parameter v = 0.5 for two examples. F decaysav1a B~ decay
to 80 with a moderate energy release Q = 634 keV, °H decays via
B~ decay to °He with the very small energy release Q = 18.6 keV.
(Note that we defined Q as the mass difference between nuclei,
not between neutral atoms). The solid line in Fig. 1 shows the
boundary of the integration area: on the left or inside the
solid line, respectively, we have the allowed (E,2) wvaluas. On
the right or outside this curve ng = z, respectively, we have the
nonclassical regime with extremely few events which are neglected
in the present classical theory. Whereas Eq. (5.3) yields a
symnetric electron distribution around 6 = 90° with respect to
the laser beam axis, the relativistic calculation yields an
asymmetric distribution. Electrons at the high energy end of the
spectrum are mainly emitted in forward direction. The dotted
lines indicate a value of ng/z > 1 up to which the Bessel
functions are already so extremely decreased that this area can-
not play a role in the nonclassical regime anymore. Nonclassical
corrections to Eq. (5.2) can only be due to (E,8) points
extremely close to the solid line. FPFurthermore, the dashed lines
in Fig. 1 show contours of constant ratios ng/z< 1. The smaller
this ratio is at some point (E,8), the higher is the number of
events that contribute to d?T/dEds at this point.

For the example 3H a laser field with v = 0.5 is already so
strong that the effective mass exceeds the Q value. For all

180 -
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S Fig. 1. Area of allowed emission angle and energy (solid curve)
{ and contours of constant ratio no/z for a f1eld inten-
sity v= 0.5 and for the nuclei (a) !®F and b) 3H. The
o relat1v1st1c electron energy is scaled in units of me s
= (mx<c"* + p 262)%/mc 2, These curves come from the
- ‘_.-:' oomplete relativistic theory.

p energies n, is then positive. This is in oontrast to the
field-free situation where nj is always negative. The given
combination of Q and v allows only configurations with ny/z>0.83.
: The value ng denotes the minimum number of photons which the
electron has to absorb from the field. In this example the elec-~
: tron must absorb energy from the field since the energy release
Sl of the nuclear decay alone is not sufficient to account for the
" effective mass of the electron in the field. Since n, for all
AN (E,2) values is rather close to z, only relatively few mul-i-

- photon terms contribute to d°l/dEd9 at one particular (E, )
N point.

.‘ All these effects can also be seen in the spectrum of the
A electrons. We obtain the energy distribution of the electrons by
_"{ inte_ -ting kg. (5.2) numerically over 9 between the linits
vy (5.3). Figure 2 shows the results of the corresponding relativ-
.::_.::, istic calculation, again for the two examples Vp and °H. A
. similar plot can be found in Ref. 27. With increasing field
— intensity the electron distribution extends to much higher
- energies. On the other hand, the maximum of the spectrum

S

[

« e e - e e e e .- . . . .. .
. AT A S e AN A T e e AT N e e T e e L
. .VLM_;_‘ A Cacas -A-(._nu;} ATV VI VA A VR WA A P A RO O PO W RO :




gl
Y

By - R
¢

. 0 e,

[Vt
ey
3

A t
' L I I |
AR
« o« a4 . L}
Y &« ® 8 > 7
LI R RTINS

»
o

N
Py

QAN

Sl "™ )

’

l“ l‘ '

A

.
h [

R .
A
‘.‘-‘l

Uy N a0

-
.
"l.- N

AN

,
1
[ 2l

R ¥, T kR
o AT T TR
L "«. P T

' Pt . '

.
ll

«'a
T r v v f

.

P
‘-.I‘...‘

)

Tanaa b

e

by M

15 =
20

Fig. 2. Energy distribution of the electrons for different field
intensities for the nuclei a) 'éF and b) 3y, Thg rela-
tivistic electron energy is scaled in units of mc” as in
Fig. 1, €p is related to the Q value of the decay by
€g = 1 + 0/mc?, and Y denotes a constant factor of
dimension (energy x time). These curves are calculated
from the complete relativistic theory.

decreases with increasing v, The area under the curve, which
represents the total number of emitted electrons and therefore
the lifetime of the nucleus, seems to be more or less constant
for the different field intensities. We shall investigate this
questicn in the next Section.

In the 3H spectrum in Fig. 2b we see again the effect of the
strong effective mass vemc</2 exceeding the Q-value of the reac-
tion. For sufficiently high v-values the spectrum does not begin
at E = 0 anymore, but at some finite energy. This reflects again
the fact that the electrons from the low energy end of the
laser-free spectrum must absorb a considerable amount of photons
from the field in order to raise their effective mass, since the
available Q value is not sufficient.
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NUCLEAR LIFETIME

One possibility to obtain the total decay rate I and the
lifetime of the nucleus T = 1/T is the numerical integration of
Eq. (5.2) between the limits (5.3) for the angle and (5.4) for
the energy. However, it 1is also possible to calculate
analytically from Eq. (3.10) by choosing another set of variables
for the electron momentum and another order of integration. The
dependence of z on (pl + p‘-) suggests, for example, the
following set of variables

<
\?=P724PQ ) }ﬂ = QaCCo§ P==-«, , /33

\//‘/ */54

in terms of which

<

For the neutrino momentum q we use again polar coordinates. With
this choice for dp and d3q and with the semiclassical transition
rate (3.10) the total decay rate T (5.1) reads after carrying out
the three trivial angular integrations

[’ = l#Y L f“gv"v /O{f3 /)O(S (6.1)

:PT"%' w0

-/
. B (2 (mye ,é”/)(z ~(no + 22 )72

After expressing z and ng in terms of s and p3 the e-funct:lon
yields the following restrictions for the integraticn limits if
the integrations are carried out in the indicated order (first
ds, then dpsand finally dE ):

S, = mye? +dm (R-E) —/3;2 + J”ml)c\/ﬁgm(ézo/—:v)—/lj 20

(Pe)y = =+ \/JW(Q--ED/
(6,), = Q.

The total decay rate 7 can then be rewritten in the form

........

.........
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‘is independent of the intensity parameter v, and so are the

- Jm(4-Ep) i
s, (6.2)
oAS

s VE-s)s-0

The value of the integral
i
_féé;— - = T
s S-S )(£- L)

limits of the remaining integrations over p3 and E,. Hence,
after integration over ds the dependence on the external field
drops out of the expression (6.2) for the total decay rate. This
means that in the quasiclassical limit the total decay rate T
is not affected by the external field, nor are the partial decay
rates dr/dp3, df/d¢ and 4 °T/d°q. Field effects only show up in
dr/ds and in the related partial rates dI/dE, dr/de, d4r/dpi,
dr/dpz, etc. :

The last two integrations in Eq. (6.2) over dp, and dE, are
easily carried ocut. We then cbtain for T the nonrelativistic
limit of the total decay rate of allowed nuclear beta decay in
the absence of an external field:

—_— ]
= \/\9%13 U < = <
/ ) = —— , \‘_\ )_E

(6.3)

/06 73 éfz}

. o
_ dW (%c'z/%z &% /;L;L/ |

Again, there is a simpler way to realize the field independence
of T in the classical limit: according to Eqs. (4.5-7)

Vooe ST 4w
\/WO(/D = 27.2 /; I{LL‘ / 5‘; x
+y+ /1w (6-4)

S _/;(f fo(‘jo (- £, _J{“@’-ei(t/f/)
+, '




where the integrations over t and p haye been commuted. If we
now transform the integration variable p to p - eA(t), the field
dependence is entirely eliminated. Obviously, in order to
achieve thls, it suffices already to integrate over the two com-
ponents of p which lie in the plane of A(t).

) The relativistic theory also leads to the result that the
nuclear lifetime is unaffected by the external field. The
3 physical importance of the effective mass term vZmc2/2 for this
> result should be stressed again. We recall that the effective
mass is due to the R%-term of the interaction Hamiltonian in the
;} R—gauge. If the field is strong enough so that the effective
oKX mass exceeds the Q value of the decay emitted electrons must
- absorb the energy difference from the field. We thus have two
N competing processes: since the electrons absorb energy they have
a larger phase space and the nucleus should decay faster. On the
b other hand, due to the effective mass only those electrons are
HN emitted which absorb between n; and approximately z photons. The
Lol distribution of the photon absorption with respect to the photon
number n is given in the classical limit by the approximation
(3.9) for the Bessel functions or by the classical distribution
. (4.6). With increasing v, i.e. with increasing phase space, the
minimum of ng/z in the entire (E,8) plane approaches unity so
RS that the portion (z - ng)z of photon absorptions that still
S leads to decay becomes very small. In the limit of classical
e electron field interaction these two effects, increasing the
{ phase space and overcoming the effective mass, cancel out each
other exactly.

”
> In a different context, namely the hyperfine splitting of
oy atomic levels in a strong radio frequency field, the just men-
s tioned cancellation has been noticed previously: by merely
) replacing the electron mass m by the effective mass (m2+e2A% /%)
N in the Hamiltonian, an effect was predicted which was not
S corrooorated by experiment [33]. It was later shown [34], that
- m the long wave length limit this effect is cancelled by the
M pA—tnrm which was initially neglected. This is another example
: for the interplay between the pA- and the A2- term. The argument
following Eq. (6.3) shows clearly that this cancellation is just
a consequence of the minimal coupling interaction.
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However, one should keep in mind that the field-independence
of the nuclear lifetime holds only in the classical limit h - O
for the electron-field interaction. This limit is well justified
for all beta decaying nuclei in the presence of laser fields with
. intensity v in the order of unity and with optical or longer
.. wavelengths. However, the quasiclassical limit breaks down for
fields with shorter wavelengths (x-ray regime) and for (ficti-
tious) nuclei with tiny Q values Q << mc-. In these cases the
parameter 2z which corresponds to the maximum number of absorbed
photons cannot be considered a large number anymore. The
classical approximation, however, holds only for multiphoton
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transfers of very high order. The classical limit furthermore
breaks down for superintense fields when v >> 1. Then the
effective mass term becomes soO large that the minimum value of
the parameter ng, which corresponds to the minimum number of
absorbed photons, comes very close to z, i.e. there are no (E,8)
configurations with. np << z anymore. In the Bessel function
procedure this implies that (E,¢) configurations beyond the
ng = z border become important. For the stationary phase method
the case v >> 1 means that higher order terms in the expansiocn
around the stationary points have to be taken into account.
These three ways to get away from the validity of the semiclassi-
cal limit will be demonstrated again in the next Section.

THE NONCLASSICAL REGIME

In order to calculate the -quantum effécts-of the elec-
tron-field interaction we have to attempt to calculate the total
decay rate analytically as far as possible without any approxima-
tions. We therefore start from the exact éxpression (3.7) for
the transition rate per time in terms of Bessel functions and
choose again the variables (s,¢,p?) for the electron momentum as
in the last section. The sum over the Bessel functions in Eq.
(3.7) cannot be carried out anymcre. We choose the order of
integrations so that we avoid an integration over the Bessel
function. The three integrations over the angular variables are
trivial, as well as the integrations over the neutrino energy E,
and over pi. We thus obtain an exact expression for the nuclear
lifetime in a laser field

d co
VAN L YA St ve s
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The summation over n and the integration over s can be carried
out analytically. For this purpose the sum of the squared Bessel
functions has to be transformed in a proper way, and the calcula-
tion of the total decay rate T is somewhat lengthy [28].

However, there also exists a completely different approach
for the exact calculation of the total decay rate I in the
presence of an external field. It is possible to express the
field influence on I by an operator acting on the decay rate
rfree(é.B) ot thg beta decay in the absence of the field [29].
.The "exact expression for the nonrelativistic rate I of allowed
beta decay reads :
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For circularly polarized fields the operator M has the form

2 A Jh
Mk, = _1‘;'7"6 x 2) / f : ) J( (7.3)

x /2

As usual, these operators are defined by their power series
expansion

expg-L M-t 5 ) - l L)t an g j

and
2 =0 k
' NS )y, c <) 3
- XM (-5 < = = .k e ) —
f:, (‘L D)Q &) EI ‘-/_k (%C&a)(t)ua\Q) .

The coefficients c, are given by

. /
Ck - ‘)12;0 (ogh#/}./ (92(/‘"7")4' /)!

Noticing that x occurs in Eq. (7.3) in combination with w as the
product wx, we can simplify the operator considerably. The k-th
term of the operator i applied to the free decay rate lfree
differs by the order (huw/Q)? from the (k-1)-th term. In the
limit hy << Q it is therefore sufficient to take only the first
term k = 1 in M into account. Consistently also exp{-iM/h} can
then be cut off at ¢ = 1. To first order of (hw/Q) the total
decay rate is thus given by

4 L 2, 4
=3+ ?cﬂgo(%@)v§/#m

(7.4)

The enhancement of the total decay rate due to the external field
is then to first order of (h./Q)
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R.-C . /¥ _“(_’;0))) (7.5)
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Expressing the intensity parameter v by the critical field

strength E. (2.23) ‘the enhancement cin be written in the form

- = _ g 3
&, ST, me
R = L+9@ )2 ), @) = 2(—= ), 8
& - Q
‘This result agrees with the nonrelativistic limit in Ref. 28. As
mentioned at the end of the preceding Section we can obtain a
considerable enhancement either for nuclei with very small Q

values Q << mc?, or for x-ray fields or for high field intensi-
ties v > 1.

Figure 3 shows the enhancement R (7.5) as a function of v
for a Nd laser with hw= 1.17 eV and for several Q-values. For
Q << mc? the enhancement already becomes very large for rela-
tively moderate field strengths. 1t should, however, be men—
tioned that the chosen Q values are considerably smaller than the
Q values of any existing beta decaying nuclei. For °H Eq. (7.5)
requires already v = 4x10° for a Nd laser in order to obtain
R = 2, corresponding to a field strength Eq of 1.2x10'" V/cnl!

100_ 1 1 ¥ lllllﬁ T 1 T l‘fll] 1 T 1T T II]:
RE A =1.06pm .
'n?Tz - 10°
10 -
- 3
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X ]
L Lol ._/
1
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Fig. 3. Enhancement R of the total decay rate T due to an
external field of wavelength A = 1.06 um as a function
of the intensity parameter v for different Q values.
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It is interesting to note that in the relativistic theory in
first order of (hw/mc?) the enhancement R still has the form
(7.6). Just the function n which depends only on the Q value of
the decay has to be replaced by a relativistic expression [28].
This implies that the field depandence of the enhancement R is
fairly well described by the nonrelativistic theory in Egs. {7.5)
or (7.6) for all field parameters. Hence the nonrelativistic
theory yields also for v »> 1 a good estimate of the total decay
rate which justifies its use for Fig. 3. Furthermore, the non-
relativistic total decay rate also gives for the entire range Of
Q-values of realistic nuclei approximately the correct answer,
i.e. it also holds for electron energies E >> mc?. We can see
this from Fig. 4 which compares the Q-dependent factor of Eq.
(7.6) in the relativistic and in the nonrelativistic theorg. For
Q/mc2 < 0.1 both curves of n are identical and up to Q/mc“ £ 100
they never differ by more than a factor of 4. This proof that
the nonrelativistic theory yields reliable enhancements even for
v> 1 and Q > mc? is the physical justification for its use
throughout these lecture notes. However, there are, of course,
measurable relativistic effects in the angular and in the energy
distributicn of the electrons and polarization effects are not at
all accounted for by the nonrelativistic treatment.

1075
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Fig. 4. Q-value factor n (2.6) in the Dirac theory (solid curve)
and in the ch;odinger theory (dashed line) as a
function of Q/mec“ = €g - 1.
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SUMMARY

We have shown that the modification of the beta-decay life-
time due to an external electromagnetic field is a pure gquantum
effect. For presently feasible laser fields the interaction
between the emitted electron and the field is well described by
the classical limit h - 0, so that the nuclear lifetime is not
affected. In order to cbtain appreciable quantum effects in
nuclear beta de ays either (i) the photon energy has to be of the
order of the Q value of the decay [30] or (ii) the field strength
must be comparable with the critical field strength. We have
furthermore seen in Fig. 4 that the modification of the lifetime
is to a fair approximation a nonrelativistic quantum effect.
Relativistic quantum corrections are small for all realistic
nuclei.

Crucial for the result that the classical electron-field
interaction does not give rise to a change in the nuclear life-
time, 1is the interplay between the pA-term of the interaction
which is responsible for the energy exchange between the electrcn
and the field, and the Z2-term which contributes to the effective
mass. For intense field problems the AZ-term is very important
and cannot be neglected as it is often done in quantum optics.

The result found here contradicts directly Refs. 10 and 14,
which predicted a considerable enhancement of free neutron and
nuclear beta decay rates with lasers available at present and
casts doubt on Refs. 13 and 15 in which similar enhancement for Yy
decay and forbidden beta decay are cobtained. We can state that
the numerical results in all of these four publications are (due
to completely different reasons) incorrect. In Refs. 10 and 14
the "enhancement" of the decay rate is due to a careless handling
of sums over Bessel functions [25] as was discussed in these
lecture notes. In Ref. 13 the underlying physical situation is
not correctly modeled [31] and the calculations in Ref. 15 are
misguided by a wrong interpretation of the non-interacting
nuclear wave function (2.13) and include an algebraical errcr,
after whose correction the proposed enhancement of forbidden
decay rates disappears [32]. Obviously, Nature does not want her
more elementary constituents to be tampered with by inadequate
means.
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kinetical momentum 5 - eR. In order to double check, we notice from Eq. (3)
that the form factor satisfies this requirement. The function E'(u) can be

rewritten as

E' (u)

E. - E. + + -._S__.‘_)-"K _""2
£ F YW TP TG (2pA(u) - eA“(u))

Ps

m? + (py - eA(u))?
2(po - p,) (7)

1
Ef‘Ei + Qg +E (PO'PZ) +

where we used the mass shell condition (py - p.)(py + p.) = m? + E%. Hence ]2
depends only on the kinetical momentum, as it should.*
We note in passing that the same holds true if the electron satisfies the

Dirac equation. ‘The Volkov soluticn is then augmented by the spinor

A
(1 +e 35;) .

o

which, since up satisfies (p - m)up = 0, can be rewritten as

ﬂ
(l-ﬁ(p-e;&-m))up.

* TActually, we have defined p as the mcmentum of the electron outside of the
field rather than the cancnical momentum. Let us denote the latter for the
moment by p.. We conclude from the fact that the external field depends cnly
on u, that the compcnents p.t and p., - P.. are ccnserved. In particular, B
they do not change when the field, as a function of u, is turned cn or off.
Hence, inasmuch as these ccmponents are concerned and only these do occur, we
can identify the asymptotic with the cancnical momentum.
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Now, in order to get the total decay rate, the differential rate lii|2 has

to be integrated over the rmomenta of the decay products. If we change thre
integration variable from 5 to 5 - eA(u) and commute the integration over p with
that one over u, the dependence of the external field is entirely eliminated.
Let us ccmpare the preceding argument with our earlier note regarding the
decay of a neutral free parcicle. ™= only difference lies in the fact that in
the latter case the integral over space could be explicitly carried out yielding
a delta-function as the expression of momentum conservation. In the present
case, owing to the presence of the nuclear wave functions, this was no longer
possible and we were left with the form factor (4). The decisive point of the
argument, the dependence of the instantaneous decay rate on the Kinetical

mementa, is exactly the same in both cases.

The above procedure depends crucially on the fact that we were able to
ﬁfite the total rate, within the quasiclassical approximation, as an integral
over an instantaneous rate, as represented in Eq. (6). We expect that this
approximation will break down as socn as the external field is so strong that
the change in the kinetical momentum during the decay time t is comparable with

the electron rest mass, viz.
l-b - el
A(lp - eA(t)|) ~ e|E(t)]it ~ m . (8)

From the uncertainty relaticn we estimate it ™~ h/E; with E; = B, - E%the nuclear
i

energy release, so that we expect our previous considerations to apply as lcng

as
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In fact, calculated enhancements of allcowed (91 as well as forbidden [6] nuclazr
beta-decay are proportional to (m/EO)3(lEI/Ecrit)2 in rough agreerment wizii the
hand-waving estimate (2). To give an explicit example we obtain for the firsc

forbidden decay of 30gr in the presence of a radiofrequency field with }E AR

t

[SEDEI

= 6x10 !3 and a wave length of X = 100m an enhancement of 2x10 *%, i.e. zer>
for all practical purposes in agreement with our above argument. In contrist,

in Ref. 2 a value of the order of unity is given.

To surmarize, we have shown via a very simple, general and fully
relativistic argument that nuclear b. a-decay, forbidden or not, carnot be
enhanced by experimentally feasible radiation fields. The situaticn 1is
particularly disillusioning for the radio frequency fields with
IEI/Ecrit n 10712, which were considerad in Ref. 2. It is different for
high-intensity x-ray lasers which are nearly rescnant with ruclear cnersy lovo.
differences [10], since in this case the interacticn between the nucslous i <ie

field is of paramount importancé.
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